Торсионная подвеска — Википедия

Торсион квадратного сеченияBarre de torsion.png

Торсионная подвеска (также стержневая подвеска) — подвеска транспортного средства, рабочими элементами которой являются торсионы (упругие стержни, работающие на кручение). Используются стержневые торсионы круглого или квадратного сечения, реже пластинчатые — набранные из некоторого числа пластин пружинной стали, совместно работающих на закручивание.

Торсионы в подвеске бронетехники

Barre de torsion.png Barre de torsion.png Ходовая часть танка Т-40 являлась новаторской в советском танкостроении — впервые (вместе с тяжёлым танком КВ-1) на серийной машине применили индивидуальную торсионную подвеску.

Торсионы подвески выполняют, как правило, в виде сплошного или полого круглого вала. Торсионы другого сечения в бронетехнике распространения не получили.

Для соединения торсиона с другими деталями на его концах выполняются головки, как правило, со шлицами треугольного, трапециевидного и реже прямоугольного профиля. В танке Pz. V «Пантера» для соединения применялись головки с лысками и клиновидный болт.

Для обеспечения достаточной прочности головки торсиона выполняются диаметром больше диаметра основного стержня, при этом d/D = 0,6…0,8 (d — диаметр рабочей части стержня, D — внутренний диаметр шлицов). В реальных конструкциях это значение колеблется от 0,54 до 1,0, последнее значение имел, например, итальянский лёгкий танк L6/40. Удобство монтажа обеспечивается разным диаметром головок (внутренняя меньше наружной), а также отверстием с резьбой для съёмника на внешнем торце торсиона.

Barre de torsion.png

.

Для более точной установки торсиона на требуемый угол закрутки при его монтаже, а также при устранении осадки торсиона вследствие накопления остаточной деформации число зубьев на головках выполняют разным. В этом случае минимальный угол перестановки можно определить так:

φmin = 360 (z2 — z1) / z2·z1,

   где z2 и z1 — число зубьев на головках торсиона.

Например, минимальный угол перестановки для торсиона танка Pz.III с числом зубьев на головках 45 и 44 будет составлять примерно 0,18º; для торсиона танка Т-72 с числом зубьев 52 и 48 — примерно 0,58º. В случае же равного числа зубьев на головках, точная регулировка требуемого угла закрутки торсиона практически невозможна. Так для танка L6/40 с числом зубьев 40 на каждой головке угол перестановки торсиона составляет 9º. Крепление торсионов, выполненное по типу танка Pz.V, вообще исключает возможность регулировать подвеску в процессе эксплуатации.

Торсионы выполняют из хромистых или кремниевых сталей с содержанием углерода 0,45-0,65%, хрома 1-1,5%, с добавлением ванадия, никеля, молибдена и других легирующих элементов. Легированная сталь, используемая в торсионных валах, обладает высокой усталостной прочностью и упругостью, как правило, это сталь типа 45ХНМФА.

Термическая обработка хромистых сталей состоит обычно из закалки при температуре 800—860 ºС с последующим отпуском при температуре 400—500ºС. Для повышения усталостной прочности торсионов впадины шлицов обрабатываются накаткой роликами. Рабочая поверхность вала подвергается дробеструйной обработке или накатке роликами, это создаёт упрочнённый поверхностный слой (наклёп) и значительно повышает усталостную прочность торсиона.

Для повышения динамических свойств, воспринимаемой нагрузки и максимального угла закрутки торсион подвергают заневоливанию. Эта технологическая операция является последней среди операций механической и термической обработки. Операция заневоливания заключается в закрутке горячего торсиона за предел его упругого состояния и выдерживании в таком положении некоторое время. При этом в поверхностных слоях возникают пластические деформации, а в сердцевине — упругие. После разгрузки торсиона сердцевина, стремясь освободиться от напряжений и вернуться в исходное состояние, встречает сопротивление пластически деформированного поверхностного слоя. Остаточные напряжения, полученные при заневоливании, позволяют повысить рабочую нагрузку и угол закрутки торсиона в эксплуатации. В некоторых случаях, как это делается для торсионов Т-72, торсион подвергается двойному заневоливанию.

Рабочая закрутка заневоленных торсионов должна совпадать с направлением закрутки при заневоливании. Поэтому заневоленные торсионы левого и правого бортов невзаимозаменяемы и соответствующим образом маркируются (как правило на торце торсиона буквами «Л» и «П»). Для предотвращения поломки торсионов в результате механических повреждений или коррозии рабочей поверхности вала его после окончательной механической и термической обработки покрывают специальным лаком, а иногда и прорезиненной тканью (M46) или изолентой Т-64, Т-72).

В связи с проектом по «большой» модернизации танка Т-34 в СССР вопрос о разработке подвески был поднят ещё в сентябре 1940 года. 19 ноября 1940 года постановление Комитета обороны № 428 обязало НКСМ и Народный комиссариат обороны СССР к 1 января 1941 года предоставить предложения о переходе на производство танков Т-34 с новой ходовой частью с торсионной подвеской. Разработанный КБ завода № 183 проект торсионной подвески предусматривал использование существующих катков и балансиров. За счёт её применения объём боевого отделения увеличивался на 20 %, что позволило увеличить запас топлива до 750 литров и разместить его в трансмиссионном отделении. При этом масса самой подвески снижалась на 300—400 кг

[1][неавторитетный источник?].

Однако начало Великой Отечественной войны отодвинуло планы по модернизации танка на несколько лет. Первым серийным советским средним танком с торсионной подвеской стал лишь Т-44, явившийся глубокой модернизацией Т-34[2].

В Великобритании параллельно с пружинами установили телескопические гидравлические амортизаторы, благодаря чему была устранена склонность подвески Кристи к продольным колебаниям корпуса, значительно повысилась плавность хода

[значимость факта?].

В стандартную комплектацию автомобиля ГАЗ-2330 «Тигр» входят: независимая торсионная подвеска всех колёс с гидравлическими амортизаторами и стабилизаторами поперечной устойчивости.

Торсионы в автомобильных подвесках

Торсионная задняя подвеска на качающихся полуосях.

В автомобильных подвесках торсионы могут использоваться как в качестве упругих элементов, так и в виде вспомогательного устройства — стабилизатора поперечной устойчивости, предназначенного для создания сопротивления крену автомобиля.

Стабилизатор поперечной устойчивости.

Стабилизатор поперечной устойчивости закрепляется на ступичном узле левого колеса, далее проходит в направлении движения до шарнирного узла крепления к кузову (как правило в виде резинометаллического шарнира), далее — в поперечном направлении к противоположному борту автомобиля, где крепится зеркально аналогично первому борту. Отрезки торсиона, проходящие в направлении движения, работают как рычаги при работе подвески в вертикальном направлении.

В качестве упругих элементов торсионы могут использоваться в рамках подвесок самых различных кинематических схем — с продольными или поперечными рычагами, с качающимися полуосями, типа «макферсон», и так далее. Однако наиболее характерно их использование в подвесках либо на двойных поперечных рычагах, либо на двойных продольных.

Наиболее последовательно применяла торсионы в подвеске на двойных поперечных рычагах американская компания «Крайслер». Первый вариант (фирменное название — TorsionAire), использовавшийся в период с 1957 по 1989 год, включал в себя два идущих вдоль лонжеронов рамы продольных торсиона в виде стальных стержней, которые служили осями нижних рычагов подвески. В ходе длительной эксплуатации у него был выявлен серьёзный недостаток, связанный с уязвимостью низко расположенных креплений торсионов для коррозии. Второй вариант использовался на отдельных моделях компании после 1976 года (платформы Chrysler F и М), в нём использовались поперечные торсионы, каждый из которых мог быть уподоблен принципу действия стабилизатору поперечной устойчивости в традиционной подвеске — с той разницей, что поперечные торсионы имеют с одной стороны неподвижное крепление, а стабилизатор закреплён лишь на рычагах подвески, в точках же крепления к раме или кузову он может свободно проворачиваться, поэтому стабилизатор и не работает при сжатии или отбое подвески одновременно с двух сторон — только при разноимённом ходе противоположных колёс. Считалось, что автомобили с последним вариантом подвески обеспечивали более высокий уровень комфорта ценой худшей управляемости по сравнению с использовавшими продольные торсионы, хотя это наверняка относится скорее к особенностям настройки подвески, чем к принципиальным особенностям её конструктивной схемы.

Подвеска на продольных торсионах. Citroen, 1935 год.

Схожие конструкции использовались также на автомобилях марок «Ситроен» (одно из самых ранних применений, ещё в середине 30-х годов), «Симка» (Simca-Chrysler 1307), «Рено» (Renault 4) и «Фиат» (Fiat 1800 и целый ряд других), представительских моделях ЗИЛ (114, 117, 4104), Morris Marina, Alfa Romeo (Giulietta, GTV, 75) и других. На автомобилях «Пакард» моделей 1955 и 1956 годов торсионными были как передняя, так и задняя подвески, причём переднее и заднее колёса с каждого борта использовали общий торсион. Специальные электроприводы изменяли угол закрутки торсионов, что позволяло «на ходу» регулировать дорожный просвет — для тех лет это была очень смелая идея, хотя в конкретной реализации на «Пакардах» уровень надёжности этого узла совершенно не соответствовал градусу его новизны.

Спортивный автомобиль 1940-х годов с торсионной подвеской на продольных рычагах. Торсион жёстко закреплён на раме поперечно, рычаги прикреплены к его концам. Конструкция простая, но очень несовершенная. Barre de torsion.png Renault 16 любопытен тем, что из-за использования двух расположенных по одному на борт торсионов у него была разная колёсная база справа и слева, так как один из торсионов конструктивно был расположен позади второго.

На многих французских переднеприводных автомобилях использовалась задняя подвеска на одинарных продольных рычагах с одним общим торсионом или двумя — по одному на борт, примерами чему являются Renault 4 и Renault 16; последний любопытен тем, что из-за использования двух расположенных по одному на борт торсионов у него была разная колёсная база справа и слева, так как один из торсионов конструктивно был расположен позади второго. Несмотря на кинематическое несовершенство, этот тип подвески был распространён во Франции вплоть до 1980-х и даже 1990-х годов благодаря возможности низко разместить между рычагами совершенно ровный пол багажного отсека, что было выгодно для очень популярных там автомобилей с кузовами «хетчбэк» и «универсал». Торсионную подвеску на продольных рычагах имели и все модели ЛуАЗ. На заднеприводных автомобилях такая подвеска применялась только на раннем этапе развития автомобилестроения (см. иллюстрацию), так как выяснилось, что при приводе на заднюю ось она не обеспечивает необходимых параметров устойчивости и управляемости.

Barre de torsion.png
Передняя подвеска VW Beetle в разрезе.

Наиболее характерный вариант торсионной подвески на двойных продольных рычагах был разработан австрийским инженером Фердинандом Порше и впервые был использован в передней подвеске автомобиля «Фольксваген Жук», а затем — на ранних моделях спортивных «Порше». В ней торсионы в виде упругих стержней располагались поперечно друг над другом и были заключены в игравшие роль поперечной балки подвески стальные трубы, а их концы соединялись поворотными кулаками. Аналогичную подвеску имели «Запорожец» и мотоколяска С3Д, торсионы были наборными пластинчатыми, квадратного сечения.

Главным преимуществом такой подвески является большая компактность в продольном и вертикальном направлениях. Кроме того, поперечина подвески расположена далеко впереди оси передних колёс, благодаря чему появляется возможность сильно вынести салон вперёд, разместив ноги водителя и переднего пассажира между арками передних колёс, что позволяло существенно сократить длину заднемоторного автомобиля. При этом, однако, расположенный спереди багажник оказывался весьма скромным по объёму — именно из-за вынесенной далеко вперёд поперечины подвески.

С точки зрения кинематики эта подвеска несовершенна: в ней происходят хотя и меньшие по сравнению с одинарными продольными рычагами, но всё же существенные изменения колёсной базы при ходах отбоя и сжатия, и так же присутствует сильное изменение развала колёс при кренах кузова. К этому следует добавить, что рычаги в ней должны воспринимать большие изгибающие и крутильные нагрузки со стороны как вертикальных, так и боковых сил, что заставляет делать их достаточно массивными.

На Fiat 130 и Porsche 911 продольные торсионы использовались в подвеске типа Макферсон[3].

В целом, торсионные подвески характеризуются компактностью, что, к примеру, позволило на «Симке» и «Рено» разместить между рычагами приводы передних колёс, что было бы весьма затруднено в случае использования пружин. Однако в силу принципиальной линейности торсиона как силового элемента (постоянной жёсткости в диапазоне нагрузок) плавность хода не столь высока, как бывает у пружинной и рессорной подвесок.

Подвеска с сопряжёнными рычагами — схема. Barre de torsion.png Подвеска с сопряжёнными рычагами «в металле».

Торсион используется и в другом, весьма распространённом, типе подвески — полузависимой с сопряжёнными рычагами, используемой в качестве задней на переднеприводных моделях. При этом основными упругими элементами в неё являются витые пружины, а не торсион; на ровной дороге она работает как обычная зависимая на перекрещивающихся продольных рычагах, а на неровном покрытии колёса за счёт закручивания балки подвески получают определённую долю самостоятельности, за счёт чего повышается плавность хода, улучшается проходимость. Эта подвеска была разработана фирмой Audi в семидесятых годах, после чего очень широко использовалась и продолжает использоваться сейчас, как правило — на бюджетных моделях.

Расчёты

Стержень, используемый как упругий элемент, который работает на скручивание, называется торсионом. Касательные напряжения τr{\displaystyle \tau _{r}}, возникающие в условиях кручения, определяются по формуле:

τr=TrJ0{\displaystyle \tau _{r}={Tr \over J_{0}}},

где r — расстояние от оси кручения.

Очевидно, что касательные напряжения достигают наибольшего значения на поверхности вала при rmax=R{\displaystyle r_{max}=R} и при максимальном крутящем моменте Mmax{\displaystyle M_{max}}, то есть

τmax=TmaxRJ0=TmaxWp{\displaystyle \tau _{max}={T_{max}R \over J_{0}}={\frac {T_{max}}{W_{p}}}},

где Wp — полярный момент сопротивления.

Это даёт возможность записать условие прочности при кручении в таком виде:

τmax=TmaxWp≤[τ]{\displaystyle \tau _{max}={\frac {T_{max}}{W_{p}}}\leq [\tau ]}.

Используя это условие, можно или по известным силовым факторам, которые создают крутящий момент Т, найти полярный момент сопротивления и далее, в зависимости от той или иной формы, найти размеры сечения, или наоборот — зная размеры сечения, можно вычислить наибольшую величину крутящего момента, которую можно допустить в сечении, которое в свою очередь, позволит найти допустимые величины внешних нагрузок.

τ=MtI0V≤τadm{\displaystyle \tau ={\frac {Mt}{\frac {I_{0}}{V}}}\leq {\tau }_{adm}}

avec τ=16Mtπd3{\displaystyle \tau ={\frac {16\,Mt}{\pi d^{3}}}} (прут)

ou τ=16deMtπ(de4−di4){\displaystyle \tau ={\frac {16\,d_{e}\,Mt}{\pi (d_{e}^{4}-d_{i}^{4})}}} (труба)

Примечания

  1. Л. Н. Васильева, И. Желтов, Г. Ф. Чикова. Правда о танке Т-34. — Москва: Атлантида — XXI век, 2005. — С. 119. — 480 с. — 5 000 экз. — ISBN 5-93238-079-9.
  2. ↑ Огонь, броня, скорость. В.Вишняков. Боевая техника армии и флота: Сб. статей / Сост. С. Н. Поташов. —М.: ДОСААФ, 1981.
  3. Раймпель, Й. Шасси автомобиля /сокр. пер. с нем./ = Fahrwerktechnik. — Москва: Машиностроение, 1983. — Т. I. — С. 195-227. — 356 с.

См. также

Торсионная подвеска Википедия

Торсион в передней подвеске
(на рисунке указан как Torsion bar)

Торсионная подвеска — подвеска транспортного средства, демпфирующими элементами которой являются торсионы (упругие стальные стержни, работающие на кручение). В сравнении с пружинной или рессорной подвеской, особенность торсионной в том, что торсионы всегда исключены из неподрессоренной массы транспортного средства.

Торсионы в подвеске бронетехники[ | ]

Ходовая часть танка Т-40 являлась новаторской в советском танкостроении — впервые (вместе с тяжёлым танком КВ-1) на серийной машине применили индивидуальную торсионную подвеску.

Торсионы подвески выполняют, как правило, в виде сплошного или полого круглого вала. Торсионы другого сечения в бронетехнике распространения не получили.

Для соединения торсиона с другими деталями на его концах выполняются головки, как правило, со шлицами треугольного, трапециевидного и реже прямоугольного профиля. В танке Pz. V «Пантера» для соединения применялись головки с лысками и клиновидный болт.

Для обеспечения достаточной прочности головки торсиона выполняются диаметром больше диаметра основного стержня, при этом d/D = 0,6…0,8 (d — диаметр рабочей части стержня, D — внутренний диаметр шлицов). В реальных конструкциях это значение колеблется от 0,54 до 1,0, последнее значение имел, например, итальянский лёгкий танк L6/40. Удобство монтажа обеспечивается разным диаметром головок (внутренняя меньше наружной), а также отверстием с резьбой для съёмника на внешнем торце торсиона.

.

Для более точной установки торсиона на требуемый угол закрутки при его монтаже, а также при устранении осадки торсиона вследствие накопления остаточной деформации число зубьев на головках выполняют разным. В этом случае минимальный угол перестановки можно определить так:

φmin = 360 (z2 — z1) / z2·z1,

   где z2 и z1 — число зубьев на головках торсиона.

Например, минимальный угол перестановки для торсиона танка Pz.III с числом зубьев на головках 45 и 44 будет составлять примерно 0,18º; для торсиона танка Т-72 с числом зубьев 52 и 48 — примерно 0,58º. В случае же равного числа зубьев на головках, точная регулир

Ответы@Mail.Ru: Что такое торсионы?

Аналог амортизаторов.

Прикольно а я незнал…. про торсионы.

Добавить нечего. Чижов — кросавчег ))))))

Это элементы подвески автомобиля, которые заменяют пружины. Пружинящую жесткость обеспечивает вал, одним концом зажатый в кузове, а другим укрепленный на подвеске. Под тяжестью кузова вал скручивается и таким образом, под действием упругой деформации, обеспечивает мягкость подвески.

Тип подвески — торсион Преимущества: Минимальное пространство для компоновки, легко устанавливается на автомобиль; малая общая масса; хорошее изменение схождения под воздействием крена; хорошее положение центра крена без отрыва и “ныряния” задка. Недостатки: Требует утверждения геометрии на очень раннем этапе разработки; избыточная поворачиваемость под воздействием поперечной силы; высокий центр крена; максимальная нагрузка ограничена в связи с напряжениями в сварных соединениях; применение дорогих технологий. Устройство: Упругим элементом такой подвески является торсион — стальной стержень определенной длины, работающий на скручивание. Один из концов такого стержня жестко закреплен на раме или несущем кузове автомобиля. А на другом конце установлен рычаг. Усилие на его свободном конце создает момент, закручивающий торсион. Продольная и боковая силы на торсион практически не действуют, поскольку воспринимаются его опорами. Конструктивные возможности торсионов более широки, чем у витой пружины. Ничто не мешает сделать стержень торсиона составным. Обычно это набор плоских пластин как и в листовых рессорах. Распространены также торсионы из многогранных стержней, собранных в пучок. Известны и конструкции из пучка круглых стержней, соединенных по концам. Витую же пружину почти всегда изготавливают из сплошного круглого стержня, поэтому при равных с торсионом диаметре и длине жесткость пружины оказывается больше, а долговечность ниже. Что же сдерживает более широкое применение торсионной подвески не только в джипах, но и в легковых автомобилях? Главной проблемой считают сложность изготовления и обработки торсионных валов. Современная технология должна обеспечить высокие пределы упругости и прочности этих деталей, их стойкость к образованию трещин. Для этой цели применяют поверхностное упрочнение стрежней торсионных валов, пластическую осадку и т. д. Подобные операции используют, конечно, и при изготовлении витых пружин, а также листовых рессор. Но стоимость торсионов при этом часто оказывается больше. Тем не менее многие автомобильные фирмы идут на такие затраты, обеспечивая своим машинам высокую плавность хода и комфортабельность.

Торсион( скорее заменитель пружин или рессор,чем амортизатора)- это предварительно нагруженный стержень,который работает на скручивание.. Широко применяется в военной технике. На советских гражданских авто -известный вездеход ЛУАЗ, на багажниках Волги(даже сейчас) и Жигулей классики. Сейчас ставится на РЕНО Символ на заднюю подвеску. Подвеска в принципе неубиваемая.

А почему все говорят только об автомобилях? Практически все танки уже много лет используют торсионы в ходовой. И это вовсе не аналог амортизаторов, а пружина. Она воспринимает нагрузку от неровностей, а амортизатор предназначен для подавления колебаний.

Торсионная подвеска — Википедия. Что такое Торсионная подвеска

Торсион квадратного сеченияBarre de torsion.png

Торсионная подвеска (также стержневая подвеска) — подвеска транспортного средства, рабочими элементами которой являются торсионы (упругие стержни, работающие на кручение). Используются стержневые торсионы круглого или квадратного сечения, реже пластинчатые — набранные из некоторого числа пластин пружинной стали, совместно работающих на закручивание.

Торсионы в подвеске бронетехники

Barre de torsion.png Barre de torsion.png Ходовая часть танка Т-40 являлась новаторской в советском танкостроении — впервые (вместе с тяжёлым танком КВ-1) на серийной машине применили индивидуальную торсионную подвеску.

Торсионы подвески выполняют, как правило, в виде сплошного или полого круглого вала. Торсионы другого сечения в бронетехнике распространения не получили.

Для соединения торсиона с другими деталями на его концах выполняются головки, как правило, со шлицами треугольного, трапециевидного и реже прямоугольного профиля. В танке Pz. V «Пантера» для соединения применялись головки с лысками и клиновидный болт.

Для обеспечения достаточной прочности головки торсиона выполняются диаметром больше диаметра основного стержня, при этом d/D = 0,6…0,8 (d — диаметр рабочей части стержня, D — внутренний диаметр шлицов). В реальных конструкциях это значение колеблется от 0,54 до 1,0, последнее значение имел, например, итальянский лёгкий танк L6/40. Удобство монтажа обеспечивается разным диаметром головок (внутренняя меньше наружной), а также отверстием с резьбой для съёмника на внешнем торце торсиона.

Barre de torsion.png

.

Для более точной установки торсиона на требуемый угол закрутки при его монтаже, а также при устранении осадки торсиона вследствие накопления остаточной деформации число зубьев на головках выполняют разным. В этом случае минимальный угол перестановки можно определить так:

φmin = 360 (z2 — z1) / z2·z1,

   где z2 и z1 — число зубьев на головках торсиона.

Например, минимальный угол перестановки для торсиона танка Pz.III с числом зубьев на головках 45 и 44 будет составлять примерно 0,18º; для торсиона танка Т-72 с числом зубьев 52 и 48 — примерно 0,58º. В случае же равного числа зубьев на головках, точная регулировка требуемого угла закрутки торсиона практически невозможна. Так для танка L6/40 с числом зубьев 40 на каждой головке угол перестановки торсиона составляет 9º. Крепление торсионов, выполненное по типу танка Pz.V, вообще исключает возможность регулировать подвеску в процессе эксплуатации.

Торсионы выполняют из хромистых или кремниевых сталей с содержанием углерода 0,45-0,65%, хрома 1-1,5%, с добавлением ванадия, никеля, молибдена и других легирующих элементов. Легированная сталь, используемая в торсионных валах, обладает высокой усталостной прочностью и упругостью, как правило, это сталь типа 45ХНМФА.

Термическая обработка хромистых сталей состоит обычно из закалки при температуре 800—860 ºС с последующим отпуском при температуре 400—500ºС. Для повышения усталостной прочности торсионов впадины шлицов обрабатываются накаткой роликами. Рабочая поверхность вала подвергается дробеструйной обработке или накатке роликами, это создаёт упрочнённый поверхностный слой (наклёп) и значительно повышает усталостную прочность торсиона.

Для повышения динамических свойств, воспринимаемой нагрузки и максимального угла закрутки торсион подвергают заневоливанию. Эта технологическая операция является последней среди операций механической и термической обработки. Операция заневоливания заключается в закрутке горячего торсиона за предел его упругого состояния и выдерживании в таком положении некоторое время. При этом в поверхностных слоях возникают пластические деформации, а в сердцевине — упругие. После разгрузки торсиона сердцевина, стремясь освободиться от напряжений и вернуться в исходное состояние, встречает сопротивление пластически деформированного поверхностного слоя. Остаточные напряжения, полученные при заневоливании, позволяют повысить рабочую нагрузку и угол закрутки торсиона в эксплуатации. В некоторых случаях, как это делается для торсионов Т-72, торсион подвергается двойному заневоливанию.

Рабочая закрутка заневоленных торсионов должна совпадать с направлением закрутки при заневоливании. Поэтому заневоленные торсионы левого и правого бортов невзаимозаменяемы и соответствующим образом маркируются (как правило на торце торсиона буквами «Л» и «П»). Для предотвращения поломки торсионов в результате механических повреждений или коррозии рабочей поверхности вала его после окончательной механической и термической обработки покрывают специальным лаком, а иногда и прорезиненной тканью (M46) или изолентой Т-64, Т-72).

В связи с проектом по «большой» модернизации танка Т-34 в СССР вопрос о разработке подвески был поднят ещё в сентябре 1940 года. 19 ноября 1940 года постановление Комитета обороны № 428 обязало НКСМ и Народный комиссариат обороны СССР к 1 января 1941 года предоставить предложения о переходе на производство танков Т-34 с новой ходовой частью с торсионной подвеской. Разработанный КБ завода № 183 проект торсионной подвески предусматривал использование существующих катков и балансиров. За счёт её применения объём боевого отделения увеличивался на 20 %, что позволило увеличить запас топлива до 750 литров и разместить его в трансмиссионном отделении. При этом масса самой подвески снижалась на 300—400 кг[1][неавторитетный источник?].

Однако начало Великой Отечественной войны отодвинуло планы по модернизации танка на несколько лет. Первым серийным советским средним танком с торсионной подвеской стал лишь Т-44, явившийся глубокой модернизацией Т-34[2].

В Великобритании параллельно с пружинами установили телескопические гидравлические амортизаторы, благодаря чему была устранена склонность подвески Кристи к продольным колебаниям корпуса, значительно повысилась плавность хода[значимость факта?].

В стандартную комплектацию автомобиля ГАЗ-2330 «Тигр» входят: независимая торсионная подвеска всех колёс с гидравлическими амортизаторами и стабилизаторами поперечной устойчивости.

Торсионы в автомобильных подвесках

Торсионная задняя подвеска на качающихся полуосях.

В автомобильных подвесках торсионы могут использоваться как в качестве упругих элементов, так и в виде вспомогательного устройства — стабилизатора поперечной устойчивости, предназначенного для создания сопротивления крену автомобиля.

Стабилизатор поперечной устойчивости.

Стабилизатор поперечной устойчивости закрепляется на ступичном узле левого колеса, далее проходит в направлении движения до шарнирного узла крепления к кузову (как правило в виде резинометаллического шарнира), далее — в поперечном направлении к противоположному борту автомобиля, где крепится зеркально аналогично первому борту. Отрезки торсиона, проходящие в направлении движения, работают как рычаги при работе подвески в вертикальном направлении.

В качестве упругих элементов торсионы могут использоваться в рамках подвесок самых различных кинематических схем — с продольными или поперечными рычагами, с качающимися полуосями, типа «макферсон», и так далее. Однако наиболее характерно их использование в подвесках либо на двойных поперечных рычагах, либо на двойных продольных.

Наиболее последовательно применяла торсионы в подвеске на двойных поперечных рычагах американская компания «Крайслер». Первый вариант (фирменное название — TorsionAire), использовавшийся в период с 1957 по 1989 год, включал в себя два идущих вдоль лонжеронов рамы продольных торсиона в виде стальных стержней, которые служили осями нижних рычагов подвески. В ходе длительной эксплуатации у него был выявлен серьёзный недостаток, связанный с уязвимостью низко расположенных креплений торсионов для коррозии. Второй вариант использовался на отдельных моделях компании после 1976 года (платформы Chrysler F и М), в нём использовались поперечные торсионы, каждый из которых мог быть уподоблен принципу действия стабилизатору поперечной устойчивости в традиционной подвеске — с той разницей, что поперечные торсионы имеют с одной стороны неподвижное крепление, а стабилизатор закреплён лишь на рычагах подвески, в точках же крепления к раме или кузову он может свободно проворачиваться, поэтому стабилизатор и не работает при сжатии или отбое подвески одновременно с двух сторон — только при разноимённом ходе противоположных колёс. Считалось, что автомобили с последним вариантом подвески обеспечивали более высокий уровень комфорта ценой худшей управляемости по сравнению с использовавшими продольные торсионы, хотя это наверняка относится скорее к особенностям настройки подвески, чем к принципиальным особенностям её конструктивной схемы.

Подвеска на продольных торсионах. Citroen, 1935 год.

Схожие конструкции использовались также на автомобилях марок «Ситроен» (одно из самых ранних применений, ещё в середине 30-х годов), «Симка» (Simca-Chrysler 1307), «Рено» (Renault 4) и «Фиат» (Fiat 1800 и целый ряд других), представительских моделях ЗИЛ (114, 117, 4104), Morris Marina, Alfa Romeo (Giulietta, GTV, 75) и других. На автомобилях «Пакард» моделей 1955 и 1956 годов торсионными были как передняя, так и задняя подвески, причём переднее и заднее колёса с каждого борта использовали общий торсион. Специальные электроприводы изменяли угол закрутки торсионов, что позволяло «на ходу» регулировать дорожный просвет — для тех лет это была очень смелая идея, хотя в конкретной реализации на «Пакардах» уровень надёжности этого узла совершенно не соответствовал градусу его новизны.

Спортивный автомобиль 1940-х годов с торсионной подвеской на продольных рычагах. Торсион жёстко закреплён на раме поперечно, рычаги прикреплены к его концам. Конструкция простая, но очень несовершенная. Barre de torsion.png Renault 16 любопытен тем, что из-за использования двух расположенных по одному на борт торсионов у него была разная колёсная база справа и слева, так как один из торсионов конструктивно был расположен позади второго.

На многих французских переднеприводных автомобилях использовалась задняя подвеска на одинарных продольных рычагах с одним общим торсионом или двумя — по одному на борт, примерами чему являются Renault 4 и Renault 16; последний любопытен тем, что из-за использования двух расположенных по одному на борт торсионов у него была разная колёсная база справа и слева, так как один из торсионов конструктивно был расположен позади второго. Несмотря на кинематическое несовершенство, этот тип подвески был распространён во Франции вплоть до 1980-х и даже 1990-х годов благодаря возможности низко разместить между рычагами совершенно ровный пол багажного отсека, что было выгодно для очень популярных там автомобилей с кузовами «хетчбэк» и «универсал». Торсионную подвеску на продольных рычагах имели и все модели ЛуАЗ. На заднеприводных автомобилях такая подвеска применялась только на раннем этапе развития автомобилестроения (см. иллюстрацию), так как выяснилось, что при приводе на заднюю ось она не обеспечивает необходимых параметров устойчивости и управляемости.

Barre de torsion.png Передняя подвеска VW Beetle в разрезе.

Наиболее характерный вариант торсионной подвески на двойных продольных рычагах был разработан австрийским инженером Фердинандом Порше и впервые был использован в передней подвеске автомобиля «Фольксваген Жук», а затем — на ранних моделях спортивных «Порше». В ней торсионы в виде упругих стержней располагались поперечно друг над другом и были заключены в игравшие роль поперечной балки подвески стальные трубы, а их концы соединялись поворотными кулаками. Аналогичную подвеску имели «Запорожец» и мотоколяска С3Д, торсионы были наборными пластинчатыми, квадратного сечения.

Главным преимуществом такой подвески является большая компактность в продольном и вертикальном направлениях. Кроме того, поперечина подвески расположена далеко впереди оси передних колёс, благодаря чему появляется возможность сильно вынести салон вперёд, разместив ноги водителя и переднего пассажира между арками передних колёс, что позволяло существенно сократить длину заднемоторного автомобиля. При этом, однако, расположенный спереди багажник оказывался весьма скромным по объёму — именно из-за вынесенной далеко вперёд поперечины подвески.

С точки зрения кинематики эта подвеска несовершенна: в ней происходят хотя и меньшие по сравнению с одинарными продольными рычагами, но всё же существенные изменения колёсной базы при ходах отбоя и сжатия, и так же присутствует сильное изменение развала колёс при кренах кузова. К этому следует добавить, что рычаги в ней должны воспринимать большие изгибающие и крутильные нагрузки со стороны как вертикальных, так и боковых сил, что заставляет делать их достаточно массивными.

На Fiat 130 и Porsche 911 продольные торсионы использовались в подвеске типа Макферсон[3].

В целом, торсионные подвески характеризуются компактностью, что, к примеру, позволило на «Симке» и «Рено» разместить между рычагами приводы передних колёс, что было бы весьма затруднено в случае использования пружин. Однако в силу принципиальной линейности торсиона как силового элемента (постоянной жёсткости в диапазоне нагрузок) плавность хода не столь высока, как бывает у пружинной и рессорной подвесок.

Подвеска с сопряжёнными рычагами — схема. Barre de torsion.png Подвеска с сопряжёнными рычагами «в металле».

Торсион используется и в другом, весьма распространённом, типе подвески — полузависимой с сопряжёнными рычагами, используемой в качестве задней на переднеприводных моделях. При этом основными упругими элементами в неё являются витые пружины, а не торсион; на ровной дороге она работает как обычная зависимая на перекрещивающихся продольных рычагах, а на неровном покрытии колёса за счёт закручивания балки подвески получают определённую долю самостоятельности, за счёт чего повышается плавность хода, улучшается проходимость. Эта подвеска была разработана фирмой Audi в семидесятых годах, после чего очень широко использовалась и продолжает использоваться сейчас, как правило — на бюджетных моделях.

Расчёты

Стержень, используемый как упругий элемент, который работает на скручивание, называется торсионом. Касательные напряжения τr{\displaystyle \tau _{r}}, возникающие в условиях кручения, определяются по формуле:

τr=TrJ0{\displaystyle \tau _{r}={Tr \over J_{0}}},

где r — расстояние от оси кручения.

Очевидно, что касательные напряжения достигают наибольшего значения на поверхности вала при rmax=R{\displaystyle r_{max}=R} и при максимальном крутящем моменте Mmax{\displaystyle M_{max}}, то есть

τmax=TmaxRJ0=TmaxWp{\displaystyle \tau _{max}={T_{max}R \over J_{0}}={\frac {T_{max}}{W_{p}}}},

где Wp — полярный момент сопротивления.

Это даёт возможность записать условие прочности при кручении в таком виде:

τmax=TmaxWp≤[τ]{\displaystyle \tau _{max}={\frac {T_{max}}{W_{p}}}\leq [\tau ]}.

Используя это условие, можно или по известным силовым факторам, которые создают крутящий момент Т, найти полярный момент сопротивления и далее, в зависимости от той или иной формы, найти размеры сечения, или наоборот — зная размеры сечения, можно вычислить наибольшую величину крутящего момента, которую можно допустить в сечении, которое в свою очередь, позволит найти допустимые величины внешних нагрузок.

τ=MtI0V≤τadm{\displaystyle \tau ={\frac {Mt}{\frac {I_{0}}{V}}}\leq {\tau }_{adm}}

avec τ=16Mtπd3{\displaystyle \tau ={\frac {16\,Mt}{\pi d^{3}}}} (прут)

ou τ=16deMtπ(de4−di4){\displaystyle \tau ={\frac {16\,d_{e}\,Mt}{\pi (d_{e}^{4}-d_{i}^{4})}}} (труба)

Примечания

  1. Л. Н. Васильева, И. Желтов, Г. Ф. Чикова. Правда о танке Т-34. — Москва: Атлантида — XXI век, 2005. — С. 119. — 480 с. — 5 000 экз. — ISBN 5-93238-079-9.
  2. ↑ Огонь, броня, скорость. В.Вишняков. Боевая техника армии и флота: Сб. статей / Сост. С. Н. Поташов. —М.: ДОСААФ, 1981.
  3. Раймпель, Й. Шасси автомобиля /сокр. пер. с нем./ = Fahrwerktechnik. — Москва: Машиностроение, 1983. — Т. I. — С. 195-227. — 356 с.

См. также

Торсионы подвески Википедия

Торсион в передней подвеске
(на рисунке указан как Torsion bar)

Торсионная подвеска — подвеска транспортного средства, демпфирующими элементами которой являются торсионы (упругие стальные стержни, работающие на кручение). В сравнении с пружинной или рессорной подвеской, особенность торсионной в том, что торсионы всегда исключены из неподрессоренной массы транспортного средства.

Торсионы в подвеске бронетехники[ | ]

Ходовая часть танка Т-40 являлась новаторской в советском танкостроении — впервые (вместе с тяжёлым танком КВ-1) на серийной машине применили индивидуальную торсионную подвеску.

Торсионы подвески выполняют, как правило, в виде сплошного или полого круглого вала. Торсионы другого сечения в бронетехнике распространения не получили.

Для соединения торсиона с другими деталями на его концах выполняются головки, как правило, со шлицами треугольного, трапециевидного и реже прямоугольного профиля. В танке Pz. V «Пантера» для соединения применялись головки с лысками и клиновидный болт.

Для обеспечения достаточной прочности головки торсиона выполняются диаметром больше диаметра основного стержня, при этом d/D = 0,6…0,8 (d — диаметр рабочей части стержня, D — внутренний диаметр шлицов). В реальных конструкциях это значение колеблется от 0,54 до 1,0, последнее значение имел, например, итальянский лёгкий танк L6/40. Удобство монтажа обеспечивается разным диаметром головок (внутренняя меньше наружной), а также отверстием с резьбой для съёмника на внешнем торце торсиона.

.

Для более точной установки торсиона на требуемый угол закрутки при его монтаже, а также при устранении осадки торсиона вследствие накопления остаточной деформации число зубьев на головках выполняют разным. В этом случае минимальный угол перестановки можно определить так:

φmin = 360 (z2 — z1) / z2·z1,

   где z2 и z1 — число зубьев на головках торсиона.

Например, минимальный угол перестановки для торсиона танка Pz.III с числом зубьев на головках 45 и 44 будет составлять примерно 0,18º; для торсиона танка Т-72 с числом зубьев 52 и 48 — примерно 0,58º. В случае же равного числа зубьев на головках, точная регулировка требуемого угла закрутки торсиона практ

Торсионная подвеска Википедия

Торсион в передней подвеске
(на рисунке указан как Torsion bar)

Торсионная подвеска — подвеска транспортного средства, демпфирующими элементами которой являются торсионы (упругие стальные стержни, работающие на кручение). В сравнении с пружинной или рессорной подвеской, особенность торсионной в том, что торсионы всегда исключены из неподрессоренной массы транспортного средства.

Торсионы в подвеске бронетехники

Ходовая часть танка Т-40 являлась новаторской в советском танкостроении — впервые (вместе с тяжёлым танком КВ-1) на серийной машине применили индивидуальную торсионную подвеску.

Торсионы подвески выполняют, как правило, в виде сплошного или полого круглого вала. Торсионы другого сечения в бронетехнике распространения не получили.

Для соединения торсиона с другими деталями на его концах выполняются головки, как правило, со шлицами треугольного, трапециевидного и реже прямоугольного профиля. В танке Pz. V «Пантера» для соединения применялись головки с лысками и клиновидный болт.

Для обеспечения достаточной прочности головки торсиона выполняются диаметром больше диаметра основного стержня, при этом d/D = 0,6…0,8 (d — диаметр рабочей части стержня, D — внутренний диаметр шлицов). В реальных конструкциях это значение колеблется от 0,54 до 1,0, последнее значение имел, например, итальянский лёгкий танк L6/40. Удобство монтажа обеспечивается разным диаметром головок (внутренняя меньше наружной), а также отверстием с резьбой для съёмника на внешнем торце торсиона.

.

Для более точной установки торсиона на требуемый угол закрутки при его монтаже, а также при устранении осадки торсиона вследствие накопления остаточной деформации число зубьев на головках выполняют разным. В этом случае минимальный угол перестановки можно определить так:

φmin = 360 (z2 — z1) / z2·z1,

   где z2 и z1 — число зубьев на головках торсиона.

Например, минимальный угол перестановки для торсиона танка Pz.III с числом зубьев на головках 45 и 44 будет составлять примерно 0,18º; для торсиона танка Т-72 с числом зубьев 52 и 48 — примерно 0,58º. В случае же равного числа зубьев на головках, точная регулировка требуемого угла закрутки торсиона практически невозможна. Так для танка L6/40 с числом зубьев 40 на каждой головке угол перестановки торсиона составляет 9º. Крепление торсионов, выполненное по типу танка Pz.V, вообще исключает возможность регулировать подвеску в процессе эксплуатации.

Торсионы выполняют из хромистых или кремниевых сталей с содержанием углерода 0,45-0,65%, хрома 1-1,5%, с добавлением ванадия, никеля, молибдена и других легирующих элементов. Легированная сталь, используемая в торсионных валах, обладает высокой усталостной прочностью и упругостью, как правило, это сталь типа 45ХНМФА.

Термическая обработка хромистых сталей состоит обычно из закалки при температуре 800—860 ºС с последующим отпуском при температуре 400—500ºС. Для повышения усталостной прочности торсионов впадины шлицов обрабатываются накаткой роликами. Рабочая поверхность вала подвергается дробеструйной обработке или накатке роликами, это создаёт упрочнённый поверхностный слой (наклёп) и значительно повышает усталостную прочность торсиона.

Для повышения динамических свойств, воспринимаемой нагрузки и максимального угла закрутки торсион подвергают заневоливанию. Эта технологическая операция является последней среди операций механической и термической обработки. Операция заневоливания заключается в закрутке горячего торсиона за предел его упругого состояния и выдерживании в таком положении некоторое время. При этом в поверхностных слоях возникают пластические деформации, а в сердцевине — упругие. После разгрузки торсиона сердцевина, стремясь освободиться от напряжений и вернуться в исходное состояние, встречает сопротивление пластически деформированного поверхностного слоя. Остаточные напряжения, полученные при заневоливании, позволяют повысить рабочую нагрузку и угол закрутки торсиона в эксплуатации. В некоторых случаях, как это делается для торсионов Т-72, торсион подвергается двойному заневоливанию.

Рабочая закрутка заневоленных торсионов должна совпадать с направлением закрутки при заневоливании. Поэтому заневоленные торсионы левого и правого бортов невзаимозаменяемы и соответствующим образом маркируются (как правило на торце торсиона буквами «Л» и «П»). Для предотвращения поломки торсионов в результате механических повреждений или коррозии рабочей поверхности вала его после окончательной механической и термической обработки покрывают специальным лаком, а иногда и прорезиненной тканью (M46) или изолентой Т-64, Т-72).

В связи с проектом по «большой» модернизации танка Т-34 в СССР вопрос о разработке подвески был поднят ещё в сентябре 1940 года. 19 ноября 1940 года постановление Комитета обороны № 428 обязало НКСМ и Народный комиссариат обороны СССР к 1 января 1941 года предоставить предложения о переходе на производство танков Т-34 с новой ходовой частью с торсионной подвеской. Разработанный КБ завода № 183 проект торсионной подвески предусматривал использование существующих катков и балансиров. За счёт её применения объём боевого отделения увеличивался на 20 %, что позволило увеличить запас топлива до 750 литров и разместить его в трансмиссионном отделении. При этом масса самой подвески снижалась на 300—400 кг[1][неавторитетный источник?].

Однако начало Великой Отечественной войны отодвинуло планы по модернизации танка на несколько лет. Первым серийным советским средним танком с торсионной подвеской стал лишь Т-44, явившийся глубокой модернизацией Т-34[2].

В Великобритании параллельно с пружинами установили телескопические гидравлические амортизаторы, благодаря чему была устранена склонность подвески Кристи к продольным колебаниям корпуса, значительно повысилась плавность хода[значимость факта?].

В стандартную комплектацию автомобиля ГАЗ-2330 «Тигр» входят: независимая торсионная подвеска всех колёс с гидравлическими амортизаторами и стабилизаторами поперечной устойчивости.

Торсионы в автомобильных подвесках

Торсионная задняя подвеска на качающихся полуосях.

В автомобильных подвесках торсионы могут использоваться как в качестве упругих элементов, так и в виде вспомогательного устройства — стабилизатора поперечной устойчивости, предназначенного для создания сопротивления крену автомобиля.

Стабилизатор поперечной устойчивости.

Стабилизатор поперечной устойчивости закрепляется на ступичном узле левого колеса, далее проходит в направлении движения до шарнирного узла крепления к кузову (как правило в виде резинометаллического шарнира), далее — в поперечном направлении к противоположному борту автомобиля, где крепится зеркально аналогично первому борту. Отрезки торсиона, проходящие в направлении движения, работают как рычаги при работе подвески в вертикальном направлении.

В качестве упругих элементов торсионы могут использоваться в рамках подвесок самых различных кинематических схем — с продольными или поперечными рычагами, с качающимися полуосями, типа «макферсон» и так далее. Однако наиболее характерно их использование в подвесках либо на двойных поперечных рычагах, либо на двойных продольных.

Наиболее последовательно применяла торсионы в подвеске на двойных поперечных рычагах американская компания «Крайслер». Первый вариант (фирменное название — TorsionAire), использовавшийся в период с 1957 по 1989 год, включал в себя два идущих вдоль лонжеронов рамы продольных торсиона в виде стальных стержней, которые служили осями нижних рычагов подвески. В ходе длительной эксплуатации у него был выявлен серьёзный недостаток, связанный с уязвимостью низко расположенных креплений торсионов для коррозии. Второй вариант использовался на отдельных моделях компании после 1976 года (платформы Chrysler F и М), в нём использовались поперечные торсионы, каждый из которых мог быть уподоблен принципу действия стабилизатору поперечной устойчивости в традиционной подвеске — с той разницей, что поперечные торсионы имеют с одной стороны неподвижное крепление, а стабилизатор закреплён лишь на рычагах подвески, в точках же крепления к раме или кузову он может свободно проворачиваться, поэтому стабилизатор и не работает при сжатии или отбое подвески одновременно с двух сторон — только при разноимённом ходе противоположных колёс. Считалось, что автомобили с последним вариантом подвески обеспечивали более высокий уровень комфорта ценой худшей управляемости по сравнению с использовавшими продольные торсионы, хотя это наверняка относится скорее к особенностям настройки подвески, чем к принципиальным особенностям её конструктивной схемы.

Подвеска на продольных торсионах. Citroen, 1935 год.

Схожие конструкции использовались также на автомобилях марок «Ситроен» (одно из самых ранних применений, ещё в середине 30-х годов), «Симка» (Simca-Chrysler 1307), «Рено» (Renault 4) и «Фиат» (Fiat 1800 и целый ряд других), представительских моделях ЗИЛ (114, 117, 4104), Morris Marina, Alfa Romeo (Giulietta, GTV, 75) и других. На автомобилях «Пакард» моделей 1955 и 1956 годов торсионными были как передняя, так и задняя подвески, причём переднее и заднее колёса с каждого борта использовали общий торсион. Специальные электроприводы изменяли угол закрутки торсионов, что позволяло «на ходу» регулировать дорожный просвет — для тех лет это была очень смелая идея, хотя в конкретной реализации на «Пакардах» уровень надёжности этого узла совершенно не соответствовал градусу его новизны.

Спортивный автомобиль 1940-х годов с торсионной подвеской на продольных рычагах. Торсион жёстко закреплён на раме поперечно, рычаги прикреплены к его концам. Конструкция простая, но очень несовершенная. Renault 16 любопытен тем, что из-за использования двух расположенных по одному на борт торсионов у него была разная колёсная база справа и слева, так как один из торсионов конструктивно был расположен позади второго.

На многих французских переднеприводных автомобилях использовалась задняя подвеска на одинарных продольных рычагах с одним общим торсионом или двумя — по одному на борт, примерами чему являются Renault 4 и Renault 16; последний любопытен тем, что из-за использования двух расположенных по одному на борт торсионов у него была разная колёсная база справа и слева, так как один из торсионов конструктивно был расположен позади второго. Несмотря на кинематическое несовершенство, этот тип подвески был распространён во Франции вплоть до 1980-х и даже 1990-х годов благодаря возможности низко разместить между рычагами совершенно ровный пол багажного отсека, что было выгодно для очень популярных там автомобилей с кузовами «хетчбэк» и «универсал». Торсионную подвеску на продольных рычагах имели и все модели ЛуАЗ. На заднеприводных автомобилях такая подвеска применялась только на раннем этапе развития автомобилестроения (см. иллюстрацию), так как выяснилось, что при приводе на заднюю ось она не обеспечивает необходимых параметров устойчивости и управляемости.

Передняя подвеска VW Beetle в разрезе.

Известный вариант передней торсионной подвески на двойных продольных рычагах был разработан австрийским инженером Фердинандом Порше и впервые был использован на гоночном автомобиле Auto Union тип-А. Аналогичной подвеской оснащались все прочие гоночные Auto Union, Фольксваген Жук», Фольксваген тип-82 и послевоенный «Порше 356». В данной подвеске торсионы в виде упругих стержней располагались поперечно друг над другом и были заключены в игравшие роль поперечной балки подвески стальные трубы, а их концы соединялись с поворотными кулаками. Аналогичную подвеску имели все модели «Запорожец» и мотоколяска С3Д, торсионы были наборными пластинчатыми, квадратного сечения. Главным преимуществом такой подвески является большая компактность в продольном и вертикальном направлениях. Кроме того, поперечина подвески расположена далеко впереди оси передних колёс, благодаря чему появляется возможность сильно вынести салон вперёд, разместив ноги водителя и переднего пассажира между арками передних колёс, что позволяло существенно сократить длину заднемоторного автомобиля. При этом, однако, расположенный спереди багажник оказывался весьма скромным по объёму — именно из-за вынесенной далеко вперёд поперечины подвески. С точки зрения кинематики эта подвеска несовершенна: в ней происходят хотя и меньшие по сравнению с одинарными продольными рычагами, но всё же существенные изменения колёсной базы при ходах отбоя и сжатия, и так же присутствует сильное изменение развала колёс при кренах кузова. К этому следует добавить, что рычаги в ней должны воспринимать большие изгибающие и крутильные нагрузки со стороны как вертикальных, так и боковых сил, что заставляет делать их достаточно массивными.

На Fiat 130 и Porsche 911 продольные торсионы использовались в подвеске типа Макферсон[3].

В целом торсионные подвески характеризуются компактностью, что, к примеру, позволило на «Симке» и «Рено» разместить между рычагами приводы передних колёс, что было бы весьма затруднено в случае использования пружин. Однако в силу принципиальной линейности торсиона как силового элемента (постоянной жёсткости в диапазоне нагрузок) плавность хода не столь высока, как бывает у пружинной и рессорной подвесок.

Подвеска с сопряжёнными рычагами — схема. Подвеска с сопряжёнными рычагами «в металле».

Торсион используется и в другом весьма распространённом типе подвески — полузависимой с сопряжёнными рычагами, используемой в качестве задней на переднеприводных моделях. При этом основными упругими элементами в ней являются витые пружины, а не торсион; на ровной дороге она работает как обычная зависимая на перекрещивающихся продольных рычагах, а на неровном покрытии колёса за счёт закручивания балки подвески получают определённую долю самостоятельности, за счёт чего повышается плавность хода, улучшается проходимость. Эта подвеска была разработана фирмой Audi в семидесятых годах, после чего очень широко использовалась и продолжает использоваться сейчас, как правило — на бюджетных моделях.

Примечания

  1. Л. Н. Васильева, И. Желтов, Г. Ф. Чикова. Правда о танке Т-34. — Москва: Атлантида — XXI век, 2005. — С. 119. — 480 с. — 5 000 экз. — ISBN 5-93238-079-9.
  2. ↑ Огонь, броня, скорость. В.Вишняков. Боевая техника армии и флота: Сб. статей / Сост. С. Н. Поташов. —М.: ДОСААФ, 1981.
  3. Раймпель, Й. Шасси автомобиля /сокр. пер. с нем./ = Fahrwerktechnik. — Москва: Машиностроение, 1983. — Т. I. — С. 195-227. — 356 с.

См. также

Что такое торсион

Преимущества: необходим минимум пространства для компоновки, легкость установки на автомобиль; небольшая общая масса; схождение выгодно изменяется под воздействием крена; выгодное расположение центра крена без «ныряния» задка и без отрыва. Недостатки: утверждать геометрию необходимо на достаточно раннем этапе процесса разработки; воздействие поперечной силы вызывает избыточную поворачиваемость; центр крена расположен высоко; максимум нагрузки ограничен из-за напряжений в сварных соединениях; использование дорогих технологий.

Устройство: В качестве упругого элемента такой подвески выступает торсион. Этот стальной стержень имеет определенную длину и работает на скручивание. Стержень жестко крепится одним из своих концов к несущему кузову или раме автомобиля. На другом же конце располагается рычаг. Закручивающий торсион момент создается под воздействием усилия на свободный конец рычага . Боковая и продольная силы воспринимаются опорами торсиона, поэтому на него почти не действуют.

По сравнению с витой пружиной у торсионов более широкие конструктивные возможности. Стержень торсиона можно сделать составным. Как в листовых рессорах, он состоит из набора плоских пластин. Некоторые торсионы состоят из собранных в пучок многогранных стержней. Встречаются конструкции, в основе которых лежит пучок соединенных по концам круглых стержней. Поскольку витая пружина часто делается из круглого сплошного стержня, то даже если длина и диаметр у них с торсионом будут одинаковы, пружина оказывается более жесткой, а срок службы укорачивается.

Почему же в легковых автомобилях торсионные подвески применяются не так широко, как в джипах? Проблема состоит в том, что торсионные валы достаточно сложно производить и обрабатывать. Перед современными технологиями встает задача сделать детали высоко упругими и прочными и защитить их от образования трещин. Для этого стержни торсионных валов поверхностно упрочняют, выполняют пластическую осадку и т.д. В процессе изготовления листовых рессор и витых пружин также используют подобные операции, но часто цена торсионов получается выше. Однако все же многие фирмы-производители автомобилей платят высокую цену, только чтобы сделать машины высоко комфортабильными и обеспечить плавность движения.

Источник: Авто Релиз.ру.



Отправить ответ

avatar
  Подписаться  
Уведомление о