Вот что о нем нужно знать

Что такое роторный двигатель Mazda, как он работает и зачем его возрождают

Вращающиеся треугольники Рёло от Мазда возвращаются в массы, но явно под другим соусом…

 

Еще в марте Мартин тен Бринк, вице-президент «Mazda Motor Europe» по продажам и обслуживанию клиентов активировал энтузиастов по всему миру одним лишь своим заявлением, что роторный двигатель Ванкеля вернется в производство.

 

В частности, тен Бринк заявил, что роторный ДВС может стать элементом для расширения диапазона движения электрического автомобиля 2019 модельного года, но на тот момент это был просто слух. «Mazda не анонсировала никаких конкретных продуктов с роторным двигателем в то время. Однако Mazda по-прежнему привержена работе над технологиями роторных двигателей», –рассуждали на тему комментария вице-президента Мазда в Mazda Motor of America.

 

Смотрите также: Один из немногих мотоциклов с роторным двигателем: История

 

Итак, что же такого особенного в этом легендарном двигателе, который так взволновал всех своим возвращением? И почему на этот раз все может быть по-другому?

 

Как он работает

Элементы системы двигателя

Нажать для увеличения

 

Роторный двигатель внутреннего сгорания по форме напоминает бочку. На нем и в нем вы не найдете многих компонентов, к которым привыкли в стандартном поршневом моторе. Во-первых, в нем нет поршней, ходящих вверх и вниз. Вместо них полезную работу совершает необычной формы треугольный поршень с округлыми краями (треугольник Рёло). Их количество может варьироваться от одного до трех в одном двигателе, но чаще всего используется схема с двумя поршнями, вращающимися вокруг вала посредством эксцентриковой полой центральной части.  

 

Топливо и воздух нагнетаются в пространство между сторонами роторов и внутренними стенками короба, где смесь воспламеняется. Быстрое, взрывное расширение газов поворачивает ротор, который таким образом производит мощность. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель более легким и компактным, чем поршневой двигатель эквивалентного объема.

 

Учитывая, что карбюратор/впуск находится в левой нижней части изображения, источник зажигания – справа, а выхлоп – справа вверху, можно составить визуальную схему, показывающую процесс работы ДВС, начиная с впуска топливо-воздушной смеси:

Затем ротор проворачивает эксцентриковый вал и повышает давление в камере сгорания:

Источник зажигания (или две свечи, как в случае с многими двигателями Ванкеля) начинает процесс возгорания:

Это сгорание топлива и воздуха закручивает ротор во время рабочего такта:

И наконец, двигатель выплевывает 

газы и остатки несгоревшего топлива наружу:

 

Мало кто знает, но роторный мотор был изначально придуман почти 100 лет назад, а не в 50-е годы XX века. Первоначально принцип работы мотора был проработан Феликсом Ванкелем, немецким инженером, который придумал свой принцип действия двигателя внутреннего сгорания.

 

Преимущество №1: Роторный двигатель легче и компактней обычного поршневого мотора

 

Война, поднявшая одних инженеров, например Фердинанда Порше, другим не дала никакой возможности развиться. Не нужны были в опасные времена мирные двигатели Ванкеля, поэтому изобретателю пришлось ждать аж до 1951 года, когда он получил приглашение от автопроизводителя NSU для разработки прототипа. Немецкая компания решила с помощью хитрости выяснить, так ли хорош оригинальный двигатель, параллельно дав возможность продемонстрировать силы другому инженеру – Ханнсу Дитеру Пашке.

 

Сложная конструкция Ванкеля фактически проиграла простому прототипу, разработанному инженером Ханнсом Дитером Пашке, который всего-навсего убрал из оригинальной конструкции все лишнее, сделав ее производство экономически выгодным.

 

Так в Германии был изобретен и опробован новый двигатель Mazda, который на протяжении долгих десятилетий был одним из немногих роторно-поршневых серийных моторов и единственным в 21-м веке.

 

Современный двигатель Ванкеля не совсем двигатель Ванкеля.

 

Да, основа роторного двигателя от Ванкеля стала самой успешной конструкцией данного двигателя в мире и единственной, которая смогла сложными путями дойти до серийного производства.

 

Еще в начале 60-х годов у NSU и Mazda проводился дружеский совместный конкурс на производство и продажу первого автомобиля с двигателем типа Ванкеля, когда они работали над сырым продуктом, пытаясь создать из него качественный товар.

 

NSU стал первым на рынке в 1964 году. Но немецкой компании не повезло: она разрушила свою репутацию в течение следующего десятилетия ненадлежащим качеством продукции. Частые отказы двигателя снова и снова посылали владельцев к дилеру и в магазин за запчастями. Вскоре нередко можно было обнаружить модели NSU Spider или Ro 80, в которых было поменяно три и более роторных двигателей Ванкеля.

 

Проблема заключалась в уплотнениях вершины ротора – тонких полосках металла между наконечниками вращающихся роторов и корпусами роторов. NSU сделал их из трех слоев, что вызывало неравномерный износ. Это была бомба замедленного действия не только для автомобилей фирмы, но и самого автопроизводителя. Мазда решила проблему уплотнения (крайне важного элемента мотора, без которого он просто не был способен работать из-за отсутствия давления), сделав их однослойными. Силовой агрегат начали устанавливать в 1967 году на спортивные люксовые модели Cosmo…

 

В начале 70-х годов Mazda представила целую линейку автомобилей с двигателем Ванкеля – мечта, которая была разбита нефтяным кризисом 1973 года. Пришлось поубавить аппетит и оставить мотор там, где в нем больше всего нуждались – в легком спортивном купе Mazda RX-7. С 1978 по 2002 год было выпущено более 800 тыс. этих легендарных спорткаров с необычным двигателем, у которого больше не было аналогов.

 

Из Германии в Японию, из Японии в СССР – вот путь двигателя, разработанного в 20-х годах XX века Ванкелем

 

Любим и ненавидим

Фанаты техники любят роторные двигатели потому, что они другие. Многие автолюбители, хорошо разбиравшиеся в технике, питали определенную слабость к такому странному двигателю, работающему на обычном топливе, но при этом не выглядевшему как стандартный набор поршней, клапанов и других неотъемлемых элементов обычного поршневого мотора.

 

В зависимости от специфики мотора ротор линейно поставляет мощность до 7.000-8.000 об/мин – бесперебойно, практически на одном уровне крутящего момента. Эта ровная полка момента как раз и отличает его от подавляющего большинства поршневых ДВС, в которых наблюдается много мощности на высоких оборотах и ее нехватка при низких.

 

Автопроизводителям также понравился роторный двигатель благодаря плавности его работы. Роторы, вращаясь вокруг центральной оси, не создают никакой вибрации по сравнению с поршневыми двигателями, у которых верхняя и нижняя точки хождения поршня отчетливо прослеживаются даже внутри салона автомобиля.

 

Но необычный двигатель – это словно необъезженная лошадь, своенравное животное, поэтому в противовес обожателям идеи Ванкеля концепция также внушает свою долю ненависти в среде автомобильных фанатов и механиков. И, казалось бы, почему?

 

Ведь у двигателя простой дизайн: отсутствует ремень ГРМ, отсутствует распределительный вал, нет привычной системы клапанов. Но за простоту приходится платить большой точностью производства деталей. Они должны быть сделаны безукоризненно, что поднимает их стоимость в разы, по сравнению с запчастями для обычных поршневых двигателей. Второе – этих запчастей мало в природе. И в-третьих, в мире почти нет специалистов, которые занимались бы починкой роторных моторов. В Москве, говорят, есть пара, но очередь к ним – на год вперед.

 

Из минусов еще можно назвать своеобразную работу роторного силового агрегата. Конструкция подразумевает сгорание масла в цилиндрах мотора, куда нагнетаются небольшие количества моторного масла прямо в камеры сгорания. Делается это для того, чтобы смазывать прилегающие площади роторов, вращающихся на бешеной скорости. Сизоватый дым, иногда выходящий из выхлопной трубы, – это признак беды, он отпугивает незнающих людей от моделей вроде RX-7 или 8.

 

Роторные моторы также предпочитают минеральные масла синтетическим, а их дизайн означает, что вы должны время от времени подливать масло в этот ненасытный агрегат, чтобы оно не закончилось.

 

Ну и наконец, те уплотнения вершины ротора, которые не удалось сделать NSU, все же недостаточно долговечны. Раз в 130-160 тыс. км мотору требуется капитальная переборка. А это удовольствие, как вы уже понимаете, дорогое. Да и что такое 130.000 км? Пять-шесть лет эксплуатации? Маловато будет!

 

Современные водители также наиболее чувствительны к другим недостаткам роторных движков: высоким выбросам вредных веществ в атмосферу (этим, скорей, обеспокоены в Greenpeace) и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь перед отправкой ее восвояси (здесь, конечно, удар наносится по карману автовладельца). Да, роторные двигатели имеют отменный «аппетит».

 

Для RX-8 Mazda частично решила эти проблемы, разместив выпускные отверстия по бокам камер сгорания. Но сейчас борьба за экологию обострилась и предложенных улучшений оказалось недостаточно. Это явилось еще одной причиной, по которой RX-8 стал последним автомобилем с двигателем Ванкеля под капотом. Он продавался 10 лет, с 2002 по 2012 год, но его убила экология.

 

Время для повторного возвращения

Вернемся к слухам Mazda о том, что компания может использовать какой-то роторный двигатель в качестве «расширителя» диапазона для своего будущего электрического автомобиля. Эта штука имела бы смысл.

 

Еще в 2012 году Mazda арендовала в Японии 100 электромобилей Demio EV, они были хороши, но напрягал небольшой диапазон без подзарядки – менее 200 км.

 

Изучив дело, в 2013 году Mazda создала прототип, который получил небольшой роторный моторчик, тот самый «расширитель» диапазона, который почти удвоил этот диапазон. Модель назвали «Mazda2 RE Range Extender».

 

Колеса прототипа приводились в движение с помощью электрического двигателя, а 0,33-литровый 38-сильный роторный моторчик работал для того, чтобы перезаряжать батареи электрического двигателя, если они разряжались и поблизости не было места для перезарядки.

 

Поскольку роторный двигатель не мог отправлять мощность на колеса, Mazda2 RE не был гибридом, как Volt или Prius. Силовой агрегат Ванкеля, скорее, был бортовым генератором, который добавлял энергии аккумуляторам.

 

Смотрите также: Mazda официально подтвердила возвращение роторных двигателей в 2019 году

 

Такая же компактность и легкий вес, которые сделали ротор Ванкеля отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным в новом качестве – расширяющего диапазон генератора на автомобиле, особенно том, который уже имеет электродвигатели и батареи, конкурирующие за пространство, и не может позволить себе много «лишнего» веса.

 

Роторные двигатели Мазда сделали себе репутацию в основном как моторы для спортивного автомобиля. В былые времена слухи об уникальных возможностях такого рода силовых агрегатов преодолели даже железный занавес СССР, где уже наши инженеры вносили и успешно интегрировали диковинные моторы в отечественные автомобили.

 

Наверное, будет не совсем правильно делать из такого легендарного двигателя всего лишь генератор для электромобиля. Но такова сегодняшняя реальность: время роторных моторов прошло, и его не получится вернуть обратно.

Роторные двигатели фирмы Mazda – на примере RX-8 (часть 1)

Данные конструкции двигателей просуществовали вплоть до 2002 года (до начала выпуска Mazda RX8). В 2003 году был начат выпуск автомобиля Mazda RX8, на который устанавливается третье поколение роторных двигателей, отличительной чертой которого стало расположение впускных и выпускных окон на боковых корпусах двигателя. Толчком к этому послужила необходимость поиска компромисса между топливной экономичность и высоким показателем мощности автомобиля, чего на двигателях предыдущих поколений достигнуть не представлялось невозможным.

Надо отметить, что расположение, геометрия и размер впускных и выпускных окон являются определяющими факторами, влияющими на характеристики роторного двигателя. Фирма Mazda за более чем сорокалетний опыт разработки роторных двигателей добилась достаточно большого прогресса в этой области (на рисунках «Сравнение боковых корпусов двигателей» и «Углы открытия и закрытия впускных и выпускных окон роторных двигателей фирмы Mazda» приведено сравнение впускных и выпускных окон двигателей третьего поколения с окнами двигателей предыдущих поколений).

Сравнение боковых корпусов двигателей

Сравнение боковых корпусов двигателей.


Годы выпуска 67-72 80-84 80-84 85-88 85-88 82-84 83-85 90-95 91-02 03 - 03 -
Модель CS*5 RX7 RX7
Cosmo
RX7
Richie
RX7 RX7
Cosmo
RX7
Cosmo
RX7 RX8 RX8
Двигатель 10A-NA 12A-NA 12A-NA 13B-T/C 13B-NA 12A-T/C 13B-NA 13B-T/C 13B-T/C 13B-NA High 13B-NA Std.
Впуск. окна 4 4 6 4 6 4 6 4 4 6 4
Впуск Первичное
окно
Открытие*1 25 32 58 45 32 58 45 58 45 3 3
Закрытие *2 45 50 25 50 40 40 30 50 50 65 60
Вторичное
окно
Открытие*1 25 32 45 32 32 32 32 32 32 12 12
Закрытие*2 45 50 25 50 30 40 30 50 50 36 45
Дополни-
тельное окно
Открытие*1 - - 58 - 45 - 45 - - 38 -
Закрытие*2 - - 70 - 80 - 70 - - 80 -
Выпуск Открытие*3 75 75 75 75 75 75 71 75 75 50 40
Закрытие*1 48 48,5 38 48,5 48,5 48,5 48,5 48 48 3*4 3*4

Углы открытия и закрытия впускных и выпускных окон роторных двигателей фирмы Mazda. Примечание: *1 — после ВМТ, *2 — после НМТ, *3 — до НМТ, *4 — до ВМТ, *5 — Cosmopolitan Sport.

Для автомобиля Mazda RX8 фирмой Mazda был разработан новый двухроторный двигатель, получивший название 13B- MSP. Данный двигатель был выпущен в двух модификациях: STANDARD POWER — двухроторный двигатель, развивающий мощность 141 кВт/192 л.с. при частоте вращения 7000 об/мин и HIGH POWER — двухроторный двигатель, развивающий мощность 170 кВт/231 л.с. при частоте вращения 8200 об/мин. Двигатели получили название «RENESIS», что подразумевает возрождение роторного двигателя вообще, а так же зарождение нового поколения роторных двигателей в частности. Данный двигатель кардинально отличается от всех разработанных ранее большим количеством технических решений, касающихся как конструкции самого двигателя, так и установленных на него систем. Двигатель вобрал в себя все лучшие разработки, сделанные ранее в этой области, что в совокупности с современными разработками и использованием современных, более прочных и износостойких материалов, позволило придать двигателю хорошие характеристики, такие как соответствие экологическому стандарту EURO 4, большой ресурс, экономичность и высокий крутящий момент в большом диапазоне частот вращения эксцентрикового вала. Роторный двигатель также отличают относительная простота конструкции: в нем имеются только две вращающиеся детали (эксцентриковый вал и ротор), отсутствуют неуравновешенные массы (это позволяет сделать двигатель очень быстроходным без опасности возникновения резонанса) и малые габариты по сравнению с аналогичными по мощности поршневыми двигателями.

По показателю уравновешенности, данный двигатель можно сравнить только с рядным шестицилиндровым двигателем или V-образным восьмицилиндровым, на поршневых двигателях других типов достижение таких показателей плавности хода не возможно. В данном двигателе неуравновешена центробежная сила от вращающихся масс. Для уравновешивания центробежной силы на оба конца эксцентрикового вала установлены противовесы. На автомобилях с МКПП масса заднего противовеса равномерно распределена по периметру маховика.

Основными элементами данного двигателя являются боковые и промежуточный корпуса, два ротора, два статора, эксцентриковый вал, две неподвижные шестерни и система уплотнений рабочих камер.

Неподвижные шестерни изготовлены из специальной стали и подвергаются ионному азотированию для предотвращения разрушения зубьев от сил инерции ротора (от его разгона и торможения) и газовых импульсов, в месте соприкосновения неподвижной шестерни и шестерни внутреннего зацепления ротора. Неподвижные шестерни запрессовываются в боковые корпуса двигателя.

Неподвижные шестерни

Неподвижные шестерни. 1 — неподвижные шестерни (модели STANDARD POWER), 2 — коренной подшипник, 3 — передняя неподвижная шестерня, 4 — задняя неподвижная шестерня, 5 — фиксирующий выступ, 6 – крышка упорного подшипника, 7 — упорный подшипник, 8 — упорная пластина, 9 — фиксирующий винт (модели HIGH POWER).

В неподвижную шестерню запрессованы коренные подшипники. Коренные подшипники фиксируются от поворота выступом (модели STANDARD POWER) или фиксирующим винтом (модели HIGH POWER).

Эксцентриковый вал изготовлен из высокопрочной углеродистой стали с применением индукционного упрочнения для повышения износостойкости. Эксцентриковый вал неразъемный, с двумя коренными и двумя роторными шейками. Крепление эксцентрикового вала осуществляется с помощью подшипников скольжения в неподвижных шестернях, которые установлены в боковых корпусах. Подшипники скольжения являются неразъемными.

Эксцентриковый вал

Эксцентриковый вал. 1 — температура моторного масла 60°С или выше, 2 — редукционный клапан эксцентрикового вала, 3 — эксцентриковый вал, 4 — ротор, 5 — масляная форсунка, 6 — моторное масло, 7 — температура моторного масла ниже 60°, 8 — слив масла (снижение давления).

В эксцентриковом валу выполнены каналы для смазки коренных и роторных шеек, а также подачи масла внутрь роторов для их охлаждения, для чего в эксцентриковый вал встроены масляные форсунки. Для облегчения прогрева двигателя при холодном запуске, в эксцентриковый вал встроен редукционный масляный клапан. Когда двигатель не прогрет, редукционный клапан открывается и давление моторного масла снижается, так как часть масла сливается из вала, в результате чего давление становится недостаточным для впрыскивания масла во внутреннюю полость ротора. Когда двигатель прогревается, редукционный клапан закрывается и масло начинает поступать во внутреннюю полость ротора для его охлаждения. От осевого перемещения эксцентриковый вал фиксируется упорным подшипником и упорной шайбой, находящимися в передней неподвижной шестерне.

Боковые и промежуточный корпуса двигателя отлиты из специального чугуна с применением азотирования, это позволило повысить износостойкость рабочих поверхностей.

Основной конструктивной особенностью, отличающей двигатели «RENESIS» от предыдущих поколений роторных двигателей, устанавливаемых на автомобили Mazda, стало так называемое боковое расположение впускных и выпускных окон.

Здесь надо отметить, что ранее все роторные двигатели фирмы Mazda устанавливаемые на серийные автомобили (около десяти моделей двигателей) имели боковое расположение впускных окон, а выпускные окна располагались на статорах. Данная конструкция оптимальна для быстроходных роторных двигателей и обеспечивает достаточно большой крутящий момент на низких частотах вращения эксцентрикового вала и высокую мощность, но не обеспечивает плавность протекания процесса сгорания из-за большого времени перекрытия окон, что ведет к снижению мощности. Расположение впускных и выпускных окон в боковых корпусах позволило сделать по нескольку не только впускных, но и выпускных окон на каждый ротор. Такое расположение окон способствует улучшению пусковых качеств двигателя, уменьшению перекрытия окон, что способствует возникновению эффекта резонансного наддува и предотвращается попадание отработавших газов во впускные окна, также была достигнута стабилизация процесса сгорания. Каждое впускное и выпускное окно имеет индивидуальный размер. Благодаря применению нескольких впускных и выпускных окон специально подобранного размера удалось достигнуть лучшего наполнения рабочей камеры свежим зарядом, улучшить очистку от отработавших газов, снизить время перекрытия окон, что позволило увеличить КПД двигателя, мощность и снизить расход топлива. Количество впускных окон на корпусах зависит от модификации двигателя.

На двигателях «RENESIS» впускные окна расположены в наиболее выгодных местах и их размер увеличен на 30% по сравнению с предыдущими двигателями. Увеличение впускных окон позволило достигнуть более раннего открытия окон и более позднего закрытия без увеличения перекрытия окон (когда впускное и выпускное окно остаются открытыми одновременно), как следствие, в камеру сгорания стало поступать больше рабочей смеси (см. рисунок «Сравнение роторных двигателей с разным расположением выпускных окон»).

Боковые и промежуточный корпуса центрируются с помощью полых штифтов. Вес боковых корпусов уменьшен за счет специальных проточек. В боковых корпусах имеются отверстия для установки неподвижных шестерен, через которые роторы приводятся в движение. На переднем корпусе установлен масляный насос и маслоприемник, на промежуточном корпусе имеются проточки для установки основных форсунок, а на задний корпус устанавливаются масляный фильтр и регулятор давления моторного масла.

Статоры изготовлены из алюминия, во внутреннюю поверхность статоров вставлены стальные пластины по технологии SIP (Sheet metal insert process — технология вставки листового металла). Внутренняя поверхность стальных вставок (эпитрохоидная поверхность) хромирована по технологии Micro Channel Porous — покрытие поверхности металлом с образованием микро пор для лучшей приработки и смазки поверхности. Для улучшения приработки эпитрохоидная поверхность покрыта фтороуглеродистым полимером.

Корпуса и статоры двигателя
Корпуса и статоры двигателя.
1 — установочная поверхность не- подвижной шестерни,
2 — установочная поверхность масляного насоса,
3 — установочная поверхность маслоприемника,
4 — передний корпус двигателя,
5 — уплотнение,
6 — статор переднего ротора,
7 — полый штифт,
8 — выпускное окно,
9 — впускное окно,
10 — промежуточный корпус,
11 — направляющая масляного щупа,
12 — маслозаливная горловина,
13 — статор заднего ротора,
14 — впускное окно системы APV
(модели HIGH POWER),
15 — установочная поверхность масляного фильтра,
16 — задний корпус двигателя,
17 — установочная поверхность регулятора давления масла,
18 — установочная поверхность основных форсунок,
19 — порт системы подачи воздуха на выпуск,
20 — вставка,
21 — поперечный разрез заднего корпуса.

Роторы (и шестерни внутреннего зацепления на роторах) изготавливают из чугуна, для предотвращения поломки зубьев неподвижной шестерни. Роторы изготавливаются пустотелыми с проточками под своеобразные камеры сгорания, также для уменьшения веса роторов была уменьшена толщина внутренних ребер. На торцах ротора имеются выточки под уплотнительные штифты и торцевые уплотнительные пластины. Во внутреннюю поверхность ротора запрессовывается роторный подшипник.

Ротор и система уплотнений рабочих камер1

Ротор и система уплотнений рабочих камер. 1 — расширитель торцевой уплотнительной пластины, 2 – торцевая уплотнительная пластина, 3, 16 — ротор, 4 — цветная метка, 5 — уплотнительный штифт, 6 — пробка, 7 – пружинная шайба, 8 — боковой элемент радиального уплотнения, 9 — радиальная уплотнительная пластина, 10 — расширители радиальной уплотнительной пластины, 11 — компрессионное кольцо, 12 — расширитель компрессионного кольца, 13 — уплотнительные кольца, 14 — пружина маслосъемного кольца, 15 — маслосъемное кольцо, 17 — пружинная вставка, 18 — роторный подшипник, 19 — выточки, 20 — выточка для камеры сгорания, 21 – направление вращения ротора, 22 — роторная шестерня внутреннего зацепления.

Ротор имеет форму треугольника с дугообразными сторонами. При вращении ротор совершает сложное планетарное движение. Ротор вращается вместе с эксцентриковым валом и одновременно, из-за обтекания неподвижной шестерни, закрепленной на боковом корпусе двигателя, посредством шестерни внутреннего зацепления, вращается вокруг своей оси. Отношение числа зубьев шестерни внутреннего зацепления ротора и неподвижной шестерни — 3:2 (51:34) При вращении ротора три его вершины постоянно касаются поверхности статора, образуя рабочие камеры, объем которых постоянно изменяется. За один оборот объем каждой рабочей камеры ротора меняется 4 раза от минимального до максимального, что обеспечивает возможность протекания четырехтактного цикла в каждой из трех рабочих камер за один оборот ротора или за три оборота эксцентрикового вала (так как ротор вращается в три раза медленнее эксцентрикового вала). В соседних камерах совершаются аналогичные циклы со сдвигом на 120°.

Таким образом, за один оборот ротора совершается три рабочих хода или один рабочий ход на каждый оборот эксцентрикового вала. Здесь нужно заметить, что в роторном, как и в поршневом двигателе, на тактах впуска и рабочего хода объем между вершинами ротора увеличивается, а на тактах сжатия и выпуска объем уменьшается. Открытие и закрытие впускных и выпускных окон осуществляется боковой поверхностью ротора.

Четыре цикла работы роторного и поршневого двигателя
Четыре цикла работы роторного и поршневого двигателя


Протекание рабочего хода в роторном и поршневом двигателе
Протекание рабочего хода в роторном и поршневом двигателе. Давление газов действует на боковую поверхность ротора/головку поршня с силой Pg. Эта сила раскладывается на нормальную составляющую Pb и тангенцианальную Pt. Тангенцианальная сила Pt и обеспечивает вращение ротора или шатуна.

Такая конструкция позволила достигнуть существенного уменьшения времени перекрытия окон.

Сравнение роторных двигателей с разным расположением выпускных окон
Сравнение роторных двигателей
с разным расположением выпускных окон.
1 — открытие впускного окна роторных
двигателей предыдущих поколений,
2 — открытие выпускного окна роторных
двигателей предыдущего поколения ,
3 — открытие выпускного окна,
4 — выпускное окно.

Можно провести сравнение между роторным и поршневым двигателями по объему и производимой мощности. Возьмем для примера рядный четырехцилиндровый двигатель объемом 2 литра (2000 см3). В данном поршневом двигателе рабочий объем 2000 см3 достигается за два оборота коленчатого вала, значит, за один оборот достигается рабочий объем 1000 см3. В роторном же двигателе за один оборот эксцентрикового вала достигается рабочий объем 1308 см3 (654 см3x2, объем двух камер сгорания двух роторов). Следовательно, можно сказать, что роторный двигатель «RENESIS» сопоставим по мощности и уравновешенности с шестицилинровым рядным двигателем объемом 2,6 литра. Охлаждение ротора осуществляется с помощью моторного масла, циркулирующего в эксцентриковом валу и впрыскиваемого во внутреннюю полость ротора через форсунки. На внутренней поверхности ротора сделано оребрение для лучшего отвода тепла. Во внутренней поверхности ротора масло совершает вихревое движение между ребрами ротора, охлаждая его.

Система уплотнений рабочих камер представляет собой совокупность прокладок, уплотнительных пластин и уплотнительных штифтов и создана для обеспечения герметичности рабочих камер, находящихся между торцами ротора. В данном роторном двигателе система уплотнений состоит из радиальных уплотнительных пластин, торцевых уплотнительных пластин, уплотнительных штифтов и расширителей. Для предотвращения попадания масла, охлаждающего и смазывающего ротор, из внутренней полости ротора в камеры сгорания и образования нагара, установлены маслосъемные кольца. Маслосъемные кольца имеют разные диаметры, маслосъемное кольцо состоит из трех деталей: уплотнительного кольца, стального кольца (с хромированной поверхностью) и пружины. Также для предотвращения попадания отработавших газов на впуск, когда ротор находится в верхней мертвой точке, установлено одно компрессионное кольцо с расширителем.

Радиальные уплотнительные пластины изготавливаются из специального чугуна с применением электронно-лучевой обработки для повышения износостойкости. Элементами радиального уплотнения являются радиальная уплотнительная пластина, два расширителя и боковые элементы радиального уплотнения. Под действием расширителей и центробежных сил инерции радиальная уплотнительная пластина прижимается к эпитрохоидной поверхности статора, тем самым, способствуя герметизации рабочих камер.

Торцевые уплотнительные пластины изготовлены из металлокерамики и прижимаются к поверхности бокового корпуса расширителями и под давлением газов, попадающих под пластины. Торцевое уплотнение состоит из дугообразных пластин и расширителей, располагающихся на каждой из боковых поверхностей роторов. Элементы торцевого уплотнения используются для уплотнения торцевого зазора между ротором и боковым корпусом. Форма торцевой уплотнительной пластины так же оптимизирована для удаления углеродистых отложений из канавки торцевого уплотнения на роторе.

Уплотнительные штифты изготовлены из специального чугуна, внешняя сторона уплотнительного штифта хромирована для уменьшения износа. К боковому корпусу уплотнительные штифты прижимаются пружинными шайбами. Уплотнительные штифты различаются по диаметрам, в зависимости от диаметра отверстия под штифт (на ротор нанесена идентификационная метка). В штифтах имеются прорези, в которые вставляются радиальные уплотнительные пластины, а торцевые уплотнительные пластины плотно прилегают к уплотнительным штифтам, тем самым достигается замкнутость системы уплотнений.

Все детали системы уплотнения неподвижны относительно ротора, что дает конструкции следующие преимущества: отсутствие износа деталей от перемещения, износ верхней части уплотнений не вызывает нарушения герметичности системы, расширители и пружины системы работают в статических условиях, что препятствует их усталостному разрушению.

Система охлаждения

В данных двигателях используется жидкостная система охлаждения закрытого типа с принудительной циркуляцией охлаждающей жидкости. Привод насоса охлаждающей жидкости осуществляется ремнём привода навесных агрегатов. Термостат с перепускным клапаном расположен во впускном патрубке охлаждающей жидкости и призван поддерживать оптимальную температуру в системе охлаждения, пуская охлаждающую жидкость по малому или большому (через радиатор) кругу охлаждения.

Система смазки

В двигателе используется система смазки с полнопоточной очисткой масла и с подачей масла под давлением к основным движущимся деталям (подшипникам скольжения, деталям системы уплотнений, роторам и т.д.).

Масляный насос трохоидного типа. Внутри него расположены два ведущих и два ведомых ротора с внутренним зацеплением, которые вращаются в одном направлении. Привод осуществляется цепью от эксцентрикового вала.

Сравнение роторных двигателей с разным расположением выпускных окон
1 — уплотнительная канавка,
2 — маслоуспокоитель,
3 — датчик низкого уровня
моторного масла.

Масляный фильтр расположен на заднем корпусе. Для уменьшения температуры масла в систему смазки могут быть установлены один или два маслоохладителя.

Для уменьшения высоты двигателя, разработан специальный плоский стальной масляный поддон (высота масляного поддона 40 мм). В масляном поддоне установлен маслоуспокоитель и датчик низкого уровня моторного масла. Для уменьшения веса маслоприемник сделан из пластика.

Двигатель работает на смеси бензина с моторным маслом, так как необходима смазка деталей системы уплотнений рабочих камер. Доля подаваемого в рабочие камеры и участвующего в образовании рабочей смеси масла (по сравнению с количеством подаваемого топлива) невелика. Для регулирования количества подаваемого в рабочие камеры масла разработан дозирующий масляный насос.

Дозирующий масляный насос
Дозирующий масляный насос. 1 — дозирующий масляный насос, 2 — слив масла, 3 — шаговый двигатель, 4 — подача масла, 5 — поверхность прилегающая к двигателю, 6 — разрез насоса, 7 — датчик-выключатель, 8 — плунжер, 9 — дифференциальный плунжер, 10 — вспомогательный плунжер, 11 — регулятор, 12 — червячный механизм, 13 — блок управления двигателем, 14 — обмотка №1, 15 — обмотка №2, 16 — обмотка №3, 17 — обмотка №4, 18 — неиспользуемый вывод.

Масляный насос
Масляный насос. 1 — поперечный разрез, 2 — подача масла, 3 — слив масла, 4 — разделитель, 5 — корпус масляного насоса, 6 — вал масляного насоса, 7 — передний ведомый ротор, 8 — передний ведущий ротор, 9 — разделитель, 10 — задний ведущий ротор, 11 — задний ведомый ротор.

Дозирующий масляный насос управляется блоком управления двигателем с помощью сигналов. Блок управления регулирует количество подаваемого дозирующим масляным насосом масла в зависимости от частоты вращения эксцентрикового вала, показаний датчика температуры ОЖ и датчика массового расхода воздуха. Подача масла в рабочие камеры осуществляется масляными форсунками.

Масляный насос

Масляные форсунки. 1 — масляные форсунки, 2 — боковой и промежуточный корпус, 3 — статор,
4 — распылитель форсунки, 5 — подача масла, 6 — обратный клапан, 7 — к воздушному шлангу.

На каждом статоре установлено по две масляные форсунки. Для улучшения смазки корпусов и уплотнений, масляные форсунки установлены под наклоном и впрыскивают масло на боковые корпуса ротора. Чтобы разрежение в двигателе не препятствовало подаче масла к масляным форсункам, на каждую форсунку установлен шланг, связанный с атмосферой. Для предотвращения попадания масла в воздушный шланг, когда во внутренней полости двигателя создается давление, в форсунку установлен обратный клапан.

Масляный насос
1 — шаговый двигатель, 2 — датчик- выключатель,
3 — шаг 52, 4 — выключено, 5 — включено.

Механизм, регулирующий количество подаваемого масла, состоит из плунжера и дифференциального плунжера, приводимого червячным механизмом. Червячный механизм приводится от эксцентрикового вала через ведущую шестерню привода дозирующего масляного насоса, находящуюся на передней крышке двигателя. Количество подаваемого масла регулируется по сигналу от блока управления двигателем, изменением хода плунжера и поворотом регулятора, связанного с шаговым двигателем. Положение шагового двигателя отслеживается с помощью датчика-выключателя, показания которого, наравне с параметрами, описанными выше, используются блоком управления двигателем для расчета необходимого количества подаваемого масла. Когда шаговый двигатель находится на шаге 52 или большем, по сигналу от датчика-выключателя в блоке управления двигателем включается алгоритм регулирования подачи масла, проходящего через дозирующий масляный насос. Когда шаговый двигатель находится ниже шага 52, устанавливается максимальная подача масла.

Алгоритм управления дозирующим масляным насосом включает несколько функций (см. таблицу «Функции управления дозирующим масляным насосом»).

Таблица. Функции управления дозирующим масляным насосом.

Состояние Описание

Замок зажигания в положении «ON», двигатель выключен (сберегающий режим)

При выключенном двигателе управление дозирующим масляным насосом прекращается для сохранения заряда аккумуляторной батареи

Функция возврата к начальным параметрам

При начале управления дозирующим масляным насосом блок управления распознает, на каком шаге находится шаговый двигатель, и происходит возврат к начальному параметру (нулевому шагу)
Функция расчета количества подаваемого масла при работе двигателя

Управление шаговым двигателем в зависимости от режима работы двигателя

Функция установки начального шага (при повороте замка зажигания в положение «OFF»)

При установке замка зажигания в положение «OFF» управление дозирующим масляным насосом прекращается и блок управления принимает шаг, на котором находится шаговый двигатель, как начальный (нулевой)

Функция контроля положения шагового двигателя

Блок управления двигателем контролирует соответствие шага, на котором находится шаговый двигатель, с необходимым шагом

Работа в режиме Fail-safe (при какой-либо неисправности)

Если в системе управления дозирующим масляным насосом или в самом насосе выявлена неисправность, блок управления двигателем регулирует подачу топлива, угол опережения зажигания, управляет шаговым двигателем, тем самым регулируя мощность двигателя, для предотвращения его повреждения

Пример работы системы управления дозирующим масляным насосом
Пример работы системы управления дозирующим масляным насосом.
1 — частота вращения эксцентрикового вала, 2 — шаговый двигатель,
3 — датчик-выключатель, 4 — около 500 об/мин, 5 — выше шага 52,
6 — шаг 0 (начальный), 7 — функция возврата к начальным параметрам,
8 — функция контроля положения шагового двигателя,
9 — функция расчета количества подаваемого масла при работе двигателя.

Бушин Сергей

© 1999 – 2010 Легион-Автодата

Обсуждение на нашем форуме: http://forum.autodata.ru/205/14813/

Mazda RX-8 — проблемы и неисправности

С дебютом нового поколения двигателей Ванкеля Mazda принялась за создание автомобиля с отличными ходовыми качествами и отменной управляемостью. Результатом работы дизайнеров стал стилистический коктейль из овалов и кривых, смешанных друг с другом в идеальных пропорциях. К этому добавилось идеальное распределение веса по осям (ровно по 50 процентов) и рулевое управление с великолепной обратной связью.

Здесь все нацелено на получение удовольствия от вождения. Настройки подвески оптимальные — не слишком жесткие, но и не мягкие. Однако следует быть осторожным при преодолении лежачих полицейских. Дорожный просвет невелик.

Помимо роторного двигателя Mazda RX-8 отличается от конкурентов необычной системой дверей. Кузов лишен центральной стойки и оснащен второй парой небольших дверей, открывающихся назад против направления движения, что облегчает посадку на задний диван.

В теории салон RX-8 рассчитан на 4-х человек. Но сзади поместятся только дети.

Автомобиль стал рекордно популярным и просуществовал на конвейере 9 лет. Всего было произведено более 100 000 экземпляров. Он был вычеркнут из модельного ряда, потому что не соответствовал нормам выбросов Евро-5 (в основном из-за большого расхода масла на угар).

Важно отметить, что, несмотря на мнение большинства механиков об RX-8 как экспериментальном автомобиле, спортивная Mazda может похвастаться типичной японской долговечностью. Однако необходимо осознавать тот факт, что в случае чрезмерно «энергичной» эксплуатации двигатель может потребовать серьезного ремонта, так и не доехав до 100 000 км. Капитальный ремонт при этом будет стоить более 2 000 долларов.

Мазду RX-8 можно приобрести по цене от 5 000 долларов. Желательно избегать многочисленных лимитированных версий, которые отличаются высоким уровнем мощности. Ремонт таких модификаций может обойтись гораздо дороже, чем обычных серийных экземпляров.

Интерьер собран из высококачественных материалов, а все детали подогнаны идеально.

Двигатель Ванкеля

Роторный двигатель не имеет клапанов и ГРМ. Треугольный поршень вращается внутри овального корпуса на эксцентриковом валу. Смесь бензина и воздуха попадает через отверстие в верхней левой части корпуса (на фото). Затем она сжимается, воспламеняется и покидает камеру через отверстие в нижнем левом углу.

Типичные проблемы и неисправности

Неисправности встречаются крайне редко, но вы должны знать, что Mazda RX-8 страдает рядом назойливых заболеваний. Наиболее серьезное из них касалось в основном копий первых лет производства — до 2006 года. Это затруднения с запуском двигателя из-за перелива топлива. Один из факторов, способствующих недугу – слабый стартер. Крайне важно, после запуска дать поработать мотору хотя бы 10 минут. Если заглушить двигатель прежде, чем он достигнет рабочей температуры, то, скорей всего, мотор уже больше не запустится. В таком случае  необходимо выкрутить свечи (придется снять колесо и подкрылок), вынуть предохранитель топливного насоса и крутить стартером так долго, пока в камере сгорания не исчезнет весь «топливный туман». Отдельные владельцы используют другой не менее эффективный запуск роторного двигателя – «с толкача». Но он смертельно опасен для катализатора. В последствии Мазда провела работу над ошибками, в том числе предложила другие свечи зажигания и модифицировала программное обеспечение ЭБУ двигателя.

Поршневые уплотнения — слабое место двигателей Renesis (с двумя камерами).

Еще одна распространенная жалоба – мотор RX-8 очень любит кушать масло. Причем, порой приходится доливать целый литр уже после 2 000 км пробега. А масло для нормальной работы силового агрегата требуется только очень высокого качества, которое, как известно, не дешево.

Механики советуют строго соблюдать интервал замены масла и менять его не реже одного раза в 10 000 км. Кроме того, они категорически запрещают использование масел на синтетической основе. Это вызывает образование нагара, который забивает уплотнения ротора и  масляные каналы. Лучше использовать специальное масло Mazda или альтернативную «минералку» хорошего качества.

Порой встречается и разгерметизация камер сгорания. Основные симптомы — падение мощности и проблемы с запуском. Некоторые владельцы считают, что регистрационный знак установлен в неудачном месте. Он перекрывает часть воздухозаборника, что ухудшает охлаждение двигателя и ускоряет его износ.

Трансмиссия

Следует остерегаться копий с автоматической коробкой передач. Производитель даже был вынужден для версий с АКПП сократить мощность двигателя с 232 до 192 л.с. Автомат не выдерживал нагрузок от мотора, максимальная мощность которого достигалась при 9000 об/мин. Помимо АКПП, в зависимости от года выпуска и рынка назначения, устанавливалась 5-ти или 6-ступенчатая механическая коробка передач. Последняя предназначалась для самых мощных модификаций.

В быту?

Четырех дверное купе вполне можно рассматривать в качестве автомобиля для повседневного использования. Проблема только в расходе топлива. Среднее значение составляет 11 л/100 км. Но это при спокойной манере движения. Однако чаще всего владельцы водят автомобиль активно — на спортивный манер. В таком режиме расход топлива редко опускается ниже 15 литров. Азарта добавляет отличная управляемость и очень точное рулевое управление.

Микробагажник не слишком удобен в обиходе и вмещает всего 290 литров. В конце концов, это спортивный автомобиль.

Помните, что большинство деталей (в том числе элементы кузова) не имеют заменителей. Торговцы поэтому часто предлагают детали со вторичного рынка, а при ремонте кузова используется преимущественно шпатлевка. Немного лучше ситуация с заменителями расходников, необходимых для ТО. Нет проблем с доступностью фильтров, тормозных колодок, передних тормозных дисков, ступичных подшипников, некоторых элементов подвески и рулевого управления. В случае с другими деталями владельцы обречены на оригиналы под заказ.

Последний экземпляр Mazda RX-8 вышел со сборочного конвейера в 2012 году. Одновременно с RX-8 закончилась целая эпоха серийных роторных двигателей Ванкеля, которая продлилась 45 лет.

Технические характеристики Mazda RX-8

Версия 1,3 х 2
Двигатель бензин
Рабочий объем 2 х 1308 см3
Количество цилиндров/клапанов 2 ротора / нет
Максимальная мощность 232 л.с.
Макс. крутящий момент 210 Нм
Максимальная скорость 235 км/ч
Разгон 0-100 км/ч 6.4 с
Средний расход, л/100 км 15.8

 

воскрешение роторного двигателя / Habr

На международной автомобильной выставке в Токио «Tokyo Motor Show», компания Mazda представила концепт своей новой модели RX-Vision. В компании всегда умели делать красивые и оригинальные автомобили — но главное в новой модели то, что она вновь будет оснащена роторным двигателем. Предыдущая модель с таким двигателем ушла с рынка три года назад.

В пресс-релизе компании сказано: «RX-Vision представляет наше видение будущего, которое компания планирует однажды претворить в жизнь». У концепта этого спортивного автомобиля переднее расположение двигателя, задний привод и роторный двигатель новой модификации SkyActiv-R.

Роторно-поршневой двигатель придумал в 1957 году немецкий инженер Вальтер Фройде в соавторстве с Феликсом Ванкелем. Отличительная особенность двигателя – трёхгранный ротор, вращающийся внутри цилиндра особого профиля. Вершины ротора, снабжённые уплотнителями, двигаются по внутренней части цилиндра и отсекают переменные объёмы камер.

Двигатель обладает большим числом преимуществ по сравнению с обычным поршневым. Он уравновешен и не даёт сильных вибраций, может работать на более высоких оборотах, обладает более высокой удельной мощностью. Недостатки двигателя – необходимость частой замены масла, высокие требования к качеству деталей и их изготовлению, склонность к перегреву и меньшая экономичность.


Двигатель SkyActiv

Правда, инженеры из Mazda, много лет работая над своими двигателями, достигли определённых успехов в устранении их недостатков. В частности, серьёзно уменьшена токсичность выхлопа и увеличена экономичность. Выхлоп соответствует нормам «Евро-4». Двухкамерный двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает немного места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет объём 1,6 литра, и при большей мощности нагревается даже меньше.

В 2003 году компания выпустила модель Mazda RX-8 Hydrogen RE, двигатель которой был способен работать как на бензине, так и на водороде. Это была уже пятая модель компании с таким универсальным двигателем.

Роторная Mazda нового поколения задерживается — Авторевю

Автомобили Mazda с роторно-поршневыми двигателями (РПД) выпускались почти 45 лет, но в 2012 году с конвейера сошло последнее купе RX-8 — и об экзотическом моторе, казалось, забыли. Однако прошлой осенью на автосалоне в Токио был представлен эффектный концепт Mazda RX Vision. С его помощью японцы громко заявили о возрождении двигателя Ванкеля — в недрах НТЦ Мазды маленькая группа из 50 инженеров-двигателистов уже работает над новым роторным мотором Skyactiv-R. Впрочем, радоваться пока рано: в одном из недавних интервью топ-менеджер компании Юдзи Накемини заявил, что скорого выхода нового роторного купе можно не ждать.

Японские инженеры уже рассказывали Леониду Голованову, что доводка нового мотора и адаптация его к современным эконормам — задача невероятной сложности. В успехе не уверен никто — даже главный двигателист Киоши Фудживара, он же Мистер 14:1, разработавший нынешние двигатели Skyactiv. Очевидно, свет в конце тоннеля пока так и не появился, потому-то Накемини-сан и заявил о том, что работы затягиваются. Вдобавок разработка стоит немалых денег, вкладывать которые в компании, понятное дело, опасаются.

Изображение будущего двигателя из американского патента

Тем не менее, недавно Mazda подала заявку в Ведомство по патентам и товарным знакам США, в которой фигурирует новый роторно-поршневой двигатель. Причем он отличается от всех прежних подобных моторов компании иным расположением впускного и выпускного коллекторов. Впуск теперь находится в нижней части, а выпуск — сверху: это сулит преимущества как в компоновке, так и в эффективности. А еще — позволит вернуть турбонаддув, который применялся на купе Mazda RX-7 третьего поколения, но исчез на RX-8 как раз из-за тесноты «под двигателем», где располагался выпускной коллектор.

Ходят слухи, что серийное роторное купе будет представлено к столетию компании Mazda в 2020 году, то есть машину придется ждать четыре года — это укладывается в заявление Юдзи Накемини о том, что скорого дебюта не случится. Но это произойдет только в том случае, если инженерам все-таки удастся довести РПД до современной кондиции.




Отправить ответ

avatar
  Подписаться  
Уведомление о