Содержание

Ксенон история открытия — Знаешь как

Инертные газы обнаружены в атмосфере в 1894 г. После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом.Но найти их удалось не сразу. Это и не удивительно: в 1 м3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона. Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона.

Остаток содержал сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой.Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ. Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком.

В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около 100 т жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента!Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу. Процесс выделения благородных газов из воздуха описан многократно. Воздух, очищенный предварительно от углекислоты и влаги , сжижают , а затем начинают испарять. Сначала «летят» более легкие газы.

После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы.Любопытно, что с точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин «инертные газы».

Ксенон вступает в реакции

Когда-то сочетание слов «химия ксенона» казалось абсурдным. И все же дерзкая мысль о том, что ксенон может образовывать устойчивые соединения с галогенами, приходила в голову многим ученым. Так, еще в 1924 г. высказывалась идея, что некоторые соединения тяжелых инертных газов (в частности, фториды и хлориды ксенона) термодинамически вполне стабильны и могут существовать при обычных условиях. Через девять лет эту идею поддержали и развили известные теоретики — Полинг и Оддо.Изучение электронной структуры оболочек криптона и ксенона с позиций квантовой механики привело к заключению, что эти газы всостоянии образовывать устойчивые соединения с фтором.

Нашлись и экспериментаторы, решившие проверить гипотезу, но шло время, ставились опы-ты , а фторид ксенона не получался. В результате почти все работы в этой области были прекращены, и мнение об абсолютной инертности благородных газов утвердилось окончательно.Однако в 1961 г. Бартлетт, сотрудник одного из университетов Канады, изучая свойства гексафторида платины — соединения более активного, чем сам фтор, установил, что потенциал ионизации у ксенона ниже, чем у кислорода(12,13 и 12,20 эв соответственно). Между тем кислород образовывал с гексафторидом платины соединение состава О

2PtF6… Бартлетт ставит опыт и при комнатной температуре из газообразного гексафторида платины и газообразного ксенона получает твердое оранжево-желтое вещество — гексафторплатинат ксенона XePtF6, поведение которого ничем не отличается от поведения обычных химических соединений.

При нагревании в вакууме XePtF

6 возгоняется без разложения, в воде гидролизуется, выделяя ксенон:2XePtF6+ 6Н2О → 2Хе + О2+ 2PtO2 + 12HF.Последующие работы Бартлетта позволили установить, что ксенон в зависимости от условий реакции образует два соединения с гексафторидом платины: XePtF6и Xe(PtF6)2; при гидролизе их получаются одни и те же конечные продукты.Убедившись, что ксенон действительно вступил в реакцию с гексафторидом платины, Бартлетт выступил с докладом и в 1962 г. опубликовал в журнале «Proceedings of the Chemical Society» статью, посвященную сделанному им открытию.

Статья вызвала огромный интерес, хотя многие химики отнеслись к ней с нескрываемым недоверием. Но уже через три недели эксперимент Бартлетта повторила группа американских исследователей во главе с Черняком в Аргоннской национальной лаборатории. Кроме того, они впервые синтезировали аналогичные соединения ксенона с гексафторидами рутения, родия и плутония. Так были открыты первые пять соединений ксенона: XePtF

6, Xe(PtF6)2, XeRuF6, XeRhF6, XePuF6 — миф об абсолютной инертности благородных газов развеян и заложено начало химии ксенона.

Вы читаете, статья ксенон история

№54 Ксенон

Таблица
  ^   =>>
v

Уильям Рамзай (1852-1916) — английский химик, лауреат Нобелевской премии по химии 1904 года.

калькулятор величин углов
Поделиться в

Ксеноновая электродуговая лампа, 15 кВт, электроды охлаждаются жидкостью: (источник: Википедия)

История открытия:

После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и не удивительно: в 1 м3 воздуха всего лишь 0,08 мл ксенона. Рамзай совместно с Траверсом переработали около 100 т жидкого воздуха и получили 0,2 мл газа, который голубовато светился в электрическом разряде и давал своеобразный спектр с характерные спектральными линиями от оранжевой до фиолетовой области. Так был открыт новый инертный газ. Его назвали, ксеноном, что в переводе с греческого значит «чужой».

Получение:

Получают ректификацией жидкого воздуха. Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу.

Физические свойства:

Ксенон представляет собой тяжелый, редкий и пассивный газ, который при значительном охлаждении может быть переведен в жидкое и твердое состояние. Как и все инертные газы он не имеет цвета и запаха. При высоком давлении способен образовывать кристаллические гидраты. Растворяется в воде и органических растворителях. Ксенон обладает сравнительно хорошей электропроводностью.

Химические свойства:

С точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин «инертные газы».
Мысль о том, что ксенон может образовывать устойчивые соединения с галогенами, приходила в голову многим ученым. Так, еще в 1924 г. высказывалась идея, что фториды и хлориды ксенона термодинамически вполне стабильны и могут существовать при обычных условиях. Через девять лет эту идею поддержали и развили известные теоретики — Полинг и Оддо. Изучение электронной структуры ксенона с позиций квантовой механики привело к заключению что он должен образовывать устойчивые соединения с фтором.
Однако лишь в 1961 г. Бартлетт из газообразного гексафторида платины и газообразного ксенона получает первое химическое соединение ксенона — гексафторплатинат ксенона XePtF6.
Заставить ксенон вступить в реакцию без участия фтора (или некоторых его соединений) пока не удалось. Все известные ныне соединения ксенона получены из его фторидов.
Советские химики внесли большой вклад в синтез и изучение соединений ксенона (В. А. Легасов). В соединениях проявляет степени окисления +2, +4, +6, +7.

Важнейшие соединения:

Дифторид ксенона XeF2, летучие кристаллы, имеет резкий специфический запах. Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Очень чистый XeF2 получается, если смесь ксенона и фтора облучить ультрафиолетом. Растворимость дифторида в воде невелика, однако раствор его — сильнейший окислитель. Постепенно окисляет воду, образуя ксенон, кислород и фтористый водород; особенно быстро реакция идет в щелочной среде. Тетрафторид ксенона XeF4, вполне устойчивое соединение, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Кристаллическое вещество, во влажном воздухе взрывоопасен. Гидролизуется в воде с образованием оксида ксенона ХеО3. Тетрафторид ксенона фторирует ртуть:
XeF4 + 2Hg = Хе + 2HgF2.
Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.
Гексафторид ксенона XeF6, крист. вещество, чрезвычайно активен и разлагается со взрывом. Гидролизуется с образованием оксофторидов и оксида ксенона(VI), с растворами щелочей диспропорционирует, образуя перксенаты. Он легко реагирует с фторидами щелочных металлов (кроме LiF), образуя соединения типа CsF*XeF6
Гексафторплатинат ксенона XePtF6 твердое оранжево-желтое вещество. При нагревании в вакууме XePtF6 возгоняется без разложения, в воде гидролизуется, выделяя ксенон:
2XеPtF6+6H2O = 2Xe+РtO3 + 12HF
Существует также соединение Xе[PtF6]2. Аналогичные соединения ксенон образует с гексафторидами рутения, родия и плутония.
Оксид ксенона(VI), бесцветные, расплывающиеся на воздухе кристаллы. Молекула ХеО3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине. Это соединение крайне неустойчиво; при его разложении мощность взрыва приближается к мощности взрыва тротила. Растворим, сильный окислитель.
Ксенаты соли ксеноновой кислоты — H2ХеO4, растворимы, в щелочной среде разлагаются на ксенон и перксенаты. Окислители, взрывоопасны.
Оксид ксенона(VIII) Молекула ХеО4 построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко, при температуре выше 0°С разлагается на кислород и ксенон. Иногда разложение носит характер взрыва.
Перксенаты соли перксеноновой кислоты — H4ХеO6, кристаллич., устойчивы до 300°С, нерастворимы. Самые сильные из известных окислителей.

Применение:

В светотехнике признание получили ксеноновые лампы высокого давления. В таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер. Свет в ксеноновых лампах появляется сразу после включения, он ярок и имеет непрерывный спектр — от ультрафиолетового до ближней области инфракрасного. Ксеноновые лампы применяются во всех случаях, когда правильная цветопередача имеет решающее значение: при киносъемках и кинопроекции, при освещении сцены и телевизионных студий, в текстильной и лакокрасочной промышленности.
Ксеноном пользуются и медики — при рентгеноскопических обследованиях головного мозга. Как и баритовая каша, применяющаяся при просвечивании кишечника, ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения. При этом он совершенно безвреден.
Радиоактивный изотоп элемента № 54, ксенон-133, используют при исследовании функциональной деятельности легких и сердца.
В виде фторидов ксенона удобно хранить и транспортировать и дефицитный ксенон, и всеразрушающий фтор. Соединения ксенона используются также как сильные окислители и фторирующие агенты.

Самоволова О.


См. также:
Белов Д.В. Неинертный благородный ксенон. Химия в школе, 2008, №6, стр.10
Трифонов Д.Н., Столетие нулевой группы. Химия (прил. к газ. «1-е Сентября»), №5, 2000 г.

Газ ксенон — где применяется и как его добывают

В настоящее время инертные газы получили широкое распространение в самых различных сферах человеческой жизни. Не является исключением и газ ксенон – один из самых необычных химических элементов, известных науке. Он представляет собой так называемый благородный газ, состоящий из молекул с одним атомом, который не обладает каким-либо запахом, вкусом или цветом. Кроме того, он не горит, не приводим к взрывам и является относительно безопасным для человека.

 

В природе этот химический элемент представлен в крайне малых количествах. Очень незначительные запасы такого вещества сосредоточены в земной коре и атмосфере нашей планеты. Кроме того, как известно современным ученым, он занимает невысокие позиции по своей распространенности и в космосе. Возможно, именно по этой причине этот элемент долгое время оставался неизвестным науке и был открыт лишь в конце 19-го века.

 

Ключевой особенностью газа ксенона, которая отличает его от многих других инертных газов, является его способность вступать в химические реакции с образованием ковалентных связей. Это первый благородных газ, с помощью которого удалось получить химические соединения, например, такие как дифторид ксенона. Кроме того, он обладает и другими особенностями, которые позволяют применять его в самых различных направлениях деятельности.

 

 

Использование в источниках света

Различные виды ламп создаются с применением газообразных веществ, которые позволяют создать внутри такого изделия соответствующие условия. При создании источников света применяется и ксенон. Им наполняют некоторые виды ламп накаливания, а также высокомощные импульсные и газоразрядные лампы. Некоторые из них способны создавать по-настоящему мощное свечение, так как окруженная Xe электрическая дуга создает очень яркий свет.

 

 

Очень часто лампы с Xe применяются при создании кинопроекторов, а также софитов для концертного и театрального оборудования. Это вещество все чаще используется в качестве аналога ртути в лампах, предназначением которых является получение ультрафиолета. Еще одно его свойство заключается в том, что из-за высокой атомной массы он препятствует испарению вольфрама с поверхности нити накаливания (находясь внутри колбы лампы).

 

 

Применение в области медицины

В конце 20-го века впервые были проведены испытания медицинского ксенона, которые показали, что он является безопасным и эффективным средством для наркоза и обезболивания. Это связано с тем, что при правильной концентрации такой газ является полностью безопасным для человека. Он не вступает в какие-либо химические реакции и быстро выводится из организма.

 

 

В наркозе ксенон обладает опьяняющим эффектом, аналогичным тому, который возникает при использовании так «веселящего газа» – закиси азота. Об этом стало известно еще задолго до того, как Xe начал применяться в области медицины. В последствии многочисленные исследования показали, что данный газ представляет собой идеальное вещество для наркоза.

В настоящее время его активно применяют в различных странах мира. Например, с конца 90-х годов он официально разрешен для использования в качестве анестезии на территории Российской Федерации, а в середине 2000-х годов получил разрешение и в странах-членах Европейского Союза. Если вас интересует возможность применения газов и их смесей в медицине, то предлагаем вам прочесть отдельную статью, посвященную этой теме.

 

Как газ ксенон применяется в сфере покорения космоса?

Обладая самой высокой стабильностью среди других тяжелых инертных газов, этот химический элемент применяется в качестве рабочего тела в:

  • ионных реактивных двигателях;
  • плазменных реактивных двигателях.

Для этих целей его используют преимущественно в чистом виде. При этом очищенные от различных посторонних добавок благородные газы могут обладать достаточно высокой стоимостью. Узнать с чем это связано вы можете в нашем материале, посвященном теме глубокой очистки газов.

 

Ионные и плазменные реактивные двигатели в настоящее время используются в современных и высокомощных космических кораблях, основным назначением которых является изучение планет Солнечной системы.

 

Кроме того, вас может заинтересовать и другой инертный газ – криптон, прочесть о применении которого вы можете здесь.

 

В чем заключается сложность получения ксенона?

Во-первых, в атмосфере Земли этот элемент является очень редким, поэтому его добыча в чистом виде невозможна. Во-вторых, технология его получения очень сложная и дорогостоящая. Его добывают как побочный продукт в процессе производства жидкого кислорода, а также при искусственном разделении воздуха на кислород и азот. Ученые ищут новые способы получения Xe, которые были бы более эффективными и безопасными в плане экологии.

 

 

Выводы

Xe – это инертный тяжелый газ, который обладает особыми качествами и широко применяется в различных сферах жизни, в том числе в медицине, науке и технике. Единственная сложность заключается в трудоемком процессе его получения, а, следовательно, высокой стоимости.

 

Также, если вас интересуют другие технические газы, вы можете изучить каталог продукции на сайте компании «ПРОМТЕХГАЗ» по ссылке http://www.propangaz.ru/.

Ксенон — Мегаэнциклопедия Кирилла и Мефодия — статья

Ксено́н (лат. Xenon, от греческого xenos — чужой), Хе (читается «ксенон»), химический элемент с атомным номером 54, атомная масса 131, 29. Инертный, или благородный, газ. Расположен в группе VIIIA в 5 периоде периодической системы.

Природный атмосферный ксенон состоит из девяти изотопов: 124 Хе (0, 096%), 126 Хе (0, 090%), 128 Хе (1, 92%), 129 Хе (26, 44%), 130 Хе (4, 08), 131 Хе (21, 18%), 132 Хе (26, 89%), 134 Хе (10, 44%) и 136 Хе (8, 87%).

Радиус атома 0, 218 нм. Электронная конфигурация внешнего слоя 5s2p6 .Энергии последовательной ионизации — 12, 130, 21, 25, 32, 1 эВ. Электроотрицательность по Полингу 2, 6.Открыт английскими учеными У. Рамзаем и М. Траверсом в 1898 методом спектрального анализа как примесь к криптону. В 1962 в Канаде Н. Бартлетт получил первое устойчивое при комнатной температуре химическое соединение ксенона XePtF
6
.

Ксенон — редчайший газ земной атмосферы, содержание в воздухе 8, 6·10-5% по объему. Общие запасы ксенона в атмосфере 1, 6·1011м3.

Ксенон выделяют как побочный продукт при переработке воздуха на азот и кислород.

Ксенон — одноатомный газ без цвета и запаха. Температура кипения –108, 12 °C, плавления –11, 85 °C. Критическая температура 16, 52 °C, критическое давление 5, 84 МПа. Плотность 5, 85 кг/м3.

В 100 мл воды при 20 °C растворяется 9, 7 мл Xe.

Ксенон образует клатраты с водой и многими органическими веществами: Хе·5, 75Н2О, 4Хе·3С6Н5ОН и другие. В клатратах атомы-гости Xe занимают полости в кристаллических решетках веществ-хозяев.

Непосредственно Xe взаимодействует только со фтором, образуя XeF2, XeF4 и XeF6. Дифторид ксенона XeF2 имеет тетрагональную решетку, температуру плавления 129 °C, плотность 4, 32 г/см3. Решетка тетрафторида XeF4 моноклинная, температура плавления 117, 1 °C, плотность 4, 0 г/см3. Решетка гексафторида XeF6 моноклинная, температура плавления 49, 5 °C, плотность 3, 41 г/см3.

Гидролизом XeF4 и XeF6 получают неустойчивые оксифториды XeОF4, XeО2F2, XeОF2, XeО3F2 и XeО2F4 и оксиды ХеО3 и ХеО4, которые при комнатной температуре они разлагаются на простые вещества.

Фториды ксенона взаимодействуют с водными растворами щелочей, образуя ксенаты МНХеО4 (М = Na, K, Rb, Cs), устойчивые до 180 °C. При гидролизе растворов XeF6, диспропорционировании XeО3 в щелочных растворах и при озонировании водных растворов XeО3 получены перксенаты Na4XeO6 и (NH4)4XeO6.

Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света.

Радиоактивные изотопы применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов.

Газ ксенон безвреден. Фториды ксенона ядовиты, ПДК в воздухе 0, 05 мг/м3.

  • С. С. Бердоносов. Инертные газы вчера и сегодня. М., 1966.
  • Фастовский В. Г., Ровинский А. Е., Петровский Ю. В. Инертные газы. М., 1972.

Ксенон

Ксенон
Атомный номер 54
Внешний вид простого вещества инертный газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
131,29 а. е. м. (г/моль)
Радиус атома ? (108) пм
Энергия ионизации
(первый электрон)
1 170,0 (12,13) кДж/моль (эВ)
Электронная конфигурация [Kr] 4d10 5s2 5p6
Химические свойства
Ковалентный радиус 140[1]пм
Радиус иона 190 пм
Электроотрицательность
(по Полингу)
2,6
Электродный потенциал 0
Степени окисления 0, +1, +2, +4, +6, +8
Термодинамические свойства простого вещества
Плотность 3,52 (при −109 °C) г/см³
Молярная теплоёмкость 20,79 Дж/(K·моль)
Теплопроводность 0,0057 Вт/(м·K)
Температура плавления 161,3 K
Теплота плавления 2,27 кДж/моль
Температура кипения 166,1 K
Теплота испарения 12,65 кДж/моль
Молярный объём 42,9 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
гранецентрированая
Параметры решётки 6,200 Å
Отношение c/a
Температура Дебая n/a K
Xe 54
131,29
[Kr]4d105s25p6
Ксенон

Ксенон — элемент главной подгруппы восьмой группы, пятого периода периодической системы химических элементов, с атомным номером 54. Обозначается символом Xe (Xenon). Простое вещество ксенон (CAS-номер: 7440-63-3) — инертный одноатомный газ без цвета, вкуса и запаха. Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону.

Происхождение названия

ξένος — чужой.

Распространённость

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли, хотя содержание 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133Xe и 135Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Физические свойства

Температура плавления −112 °C,температура кипения −108 °C,свечение в разряде фиолетовым цветом.

Химические свойства

Первый инертный газ, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона.

Изотопы ксенона

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон. Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов.

Применение

Ксеноновая лампа Прототип ионного двигателя на ксеноне.

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы (127Xe, 133Xe, 137Xe, и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
  • С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее — как инертный газ — не вызывает химических последствий). Первые диссертации о технике ксенонового наркоза в России — 1993 г., в качестве лечебного наркоза эффективно применяется для снятия острых абстинентных состояний (Абстинентный синдром) и лечения наркомании, а также психических и соматических расстройств.
  • Жидкий ксенон иногда используется как рабочая среда лазеров
  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а так же в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния называемого гиперполяризацией.
  • Ксенон используется в конструкции ячейки Голея.

Биологическая роль

Ксенон не играет никакой биологической роли.

Физиологическое действие

Газ ксенон безвреден, но способен вызвать наркоз (по физическому механизму), а в больших концентрациях (более 80 %) вызывает асфиксию.
Фториды ксенона ядовиты, ПДК в воздухе 0,05 мг/м³.

Что такое ксенон. Зачем дышать газом. Рассказывает врач

Процедура ксенонотерапии вошла в медицинскую практику около 20 лет назад, и многие пациенты, попробовавшие её, уже оценили результат. Обладая уникальными обезболивающими, противовоспалительными, успокаивающими свойствами, ксенон применяется во многих медицинских областях, в том числе в восстановительном лечении. Научно доказано, что курс такой процедуры превосходит по эффективности многие другие физиотерапевтические способы воздействия на центральную нервную систему. О свойствах и влиянии ксенона на наш организм нам рассказал специалист OSTEOPOLYCLINIC специалист по ксенонотерапии, инструктор ЛФК, психолог Максим Александрович Бувин.

Фото: Валерия Баринова, «Чемпионат»

Что это такое?

Ксенонотерапия — это ингаляционная процедура. Процесс по ощущениям безболезненный и длится 3,5 минуты. Вы дышите через маску, а поступающий газ не имеет вкуса и запаха. Во время процедуры вы испытываете различные положительные эмоции, например будете ощущать что-то похожее на лёгкое опьянение, как будто выпили бокал изысканного вина. При этом вы можете также почувствовать небольшое головокружение и покалывание в кончиках пальцев рук и ног, волна тепла гуляет по всему телу — это нормальная реакция.

С чем работает ксенонотерапия?

Ксенон входит в состав воздуха. Он попадает к нам из недр земли — выходит из почвы на поверхность планеты и витает в атмосфере. Благодаря особым технологиям, которые забирают его из воздуха или же, когда ксенон попадает в смеси газов, его отделяют и очищают, а потом используют в медицине. Его применение не имеет ограничений, кроме законодательных – нельзя использовать во время беременности и для детей до 18 лет. Несовершеннолетним процедура разрешена только при хирургических вмешательствах.

Фото: Валерия Баринова, «Чемпионат»

В медицину элемент пришёл благодаря трём своим достоинствам, благодаря которым достигается:

1. Обезболивание.
2. Релаксация.
3. Противотревожный эффект.

Сначала ксенон стали использовать в хирургии как наркоз, а в процессе работы он обрастал всё новыми и новыми свойствами. Ксенон используется и как комплексная терапия, и для снятия ломки у наркоманов и алкоголиков. Есть ещё монотерапия, с помощью неё можно лечить панические атаки, депрессии, хронические болевые синдромы.

Фото: Валерия Баринова, «Чемпионат»

Кому нужны эти процедуры?

• офисным работникам, которые всегда находятся в состоянии стресса и мало двигаются;
• спортсменам в межтренировочный период после сильных физических нагрузок;
• людям после долгого перелёта;
• людям с мигренью;
• людям, перенёсшим операцию или готовящимся к ней.

В первую очередь ксенон работает с напряжением, так как является сильным релаксантом, но также воздействует и на некоторые гормоны. Например, на кортизол и адреналин. Процедура не снижает их до критических показателей. Врач строго отслеживает, чтобы показатели находились на уровне здорового человека.

Однако терапию нельзя применять за короткий срок до операции, так как во время наркоза возможен резкий скачок адреналина. В результате чего вам понадобится чуть больше анастезии для того, чтобы ощутить эффект обезболивания и онеменения. Опытный врач посоветует вам посетить ксенонотерапевтическую процедуру после или за день до хирургического вмешательства.

Панические атаки всегда сопровождаются очень бурной вегетативной реакцией — это потеющие ладошки, учащение сердцебиения, чувство нехватки воздуха, паника. Все эти изменения ксенон позволяет минимизировать. В следующий раз, когда у человека случается такой приступ, остаётся только психологический фактор, и с этим справляться уже гораздо проще. Поэтому ксенон очень хорошо работает в комплексной терапии с психиатрами.

Фото: Валерия Баринова, «Чемпионат»

Как работает ксенон при психосоматических болях?

Если речь идёт о гипохондрии или, так сказать, синдроме третьекурсника медицинского учреждения, когда человек понимает, что болеет всем и, какое заболевание ни открой, он находит в себе все эти симптомы, ксенонотерапия также будет эффективна. Это опять же лежит в одной плоскости с психиатрией, в том понимании, что в головном мозге проходят процессы, которые проходить не должны. Ксенон убирает стрессовый фактор, уровни адреналина и кортизола приходят в норму, нервная система становится более уравновешенной.

Вернёмся к офисным работникам. Когда они приходят на повторный приём, то говорят одно и то же — те факторы, которые их раздражали до процедуры, перестали задевать после. Организм начинает защищаться благодаря перезагрузке. Нормализуется сон и обменные процессы.

Как часто нужно проходить процедуру?

Ксенон не имеет побочных эффектов и токсичных воздействий на организм, поэтому процедуру можно проводить ежедневно, зависимости не возникает. Но среднестатистическому человеку, который живёт в мегаполисе, я советую ходить на процедуру один раз еженедельно в течение 5 недель, а далее смотреть на своё состояние. Всё очень индивидуально как по частоте, так и по концентрации.

Обсуждение:Ксенон — Википедия

Материал из Википедии — свободной энциклопедии

> Непосредственно Xe взаимодействует только со фтором, образуя XeF2, XeF4 и XeF6.

Это не так. Исторически первым соединением ксенона был получен его гексафтороплатинат. PtF6, являясь весьма реакционноспособным соединением, вступает в реакцию почти со всем, что попадётся ему под руку, и когда учёные обнаружили, что гексафторид платины окисляет кислород воздуха, не давая ему даже перейти в атомарную форму, образуя гексафтороплатинат диоксигенила [O2][PtF6], решили скрестить PtF6 с ксеноном. Получили смесь Xe[PtF6] и Xe[PtF6]2. С фтором в лаборатории работать крайне неудобно из-за его низкой температуры кипения, а PtF6 сжижается очень легко. Фтор был вторым.

Ксенон — редчайший газ земной атмосферы.[править код]

Редчайший газ земной атмосферы, вообще-то, радон.

обсуждение про редчайший газ вовсе не корректно, так как можно и не только простые вещества рассматривать. PavelSI 00:10, 12 сентября 2008 (UTC)

Список соединений ксенона[править код]

Список соединений ксенона содержит несуществующие соединения: Октафторид ксенона (XeF8) — не получен Гексафтороплатинат ксенона (Xe[PtF6]) — доказано, что данное «соединение» — смесь Тетрафторхромундекафтордиантимонат ксенона(II) (Xe(CrF4Sb2F11)2) — К. Кристи показал, что данный комплексный ион не образуется Гидроксид ксенона(IV) (Xe(OH)4) — не получен, хотя в старых учебниках и описан Дихлорид ксенона (XeCl2) — эксимерное соединение Перхлорат ксенона (XeClO4) — получен Xe(ClO4)2 Перксеноновая кислота (h5XeO6) • Ксеноновая кислота (h3XeO4) — существуют растворы оксидов ксенона, но собственно кислоты не описаны  — Эта реплика добавлена участником Chemister (о • в) 02:24, 17 июля 2012 (UTC)

  • Уважаемый коллега! Если Вы разбираетесь в теме статьи — правьте смело. В частности, если в некоторых источниках упоминаются некие вещества, и есть не менее авторитетные источники, в которых указано, что эти вещества не существуют (в прошлом имела место научная ошибка вроде флогистона и оксида мурия, или даже мистификация), то, мне кажется, имеет смысл создать в статье раздел, называющийся, скажем, Научные ошибки, и всю информацию о несуществующих соединениях перенести туда. Разумеется, информация должна быть проверяемой. Гамлиэль Фишкин 02:54, 17 июля 2012 (UTC)



Отправить ответ

avatar
  Подписаться  
Уведомление о