Генератор постоянного тока: устройство и принцип действия

Одним из наиболее распространенных электрических устройств является генератор постоянного тока, принцип действия которого основан на таких понятиях, как электромагнитная сила и индукция. Согласно принципу обратимости электрических машин, данное устройство, в конкретных условиях, может выполнять функцию и генератора и электродвигателя.

Составные части генератора

Генератор постоянного тока состоит из двух основных частей – якоря и станины, где расположены электромагниты. На внутренней стороне станины устанавливаются сердечники полюсов, концы которых имеют полюсные наконечники. С помощью наконечников, магнитная индукция более равномерно распределяется по окружности якоря.

На сердечники надеваются катушки, входящие в состав обмотки возбуждения. Сама станина играет роль замыкающей части. Здесь расположены еще и дополнительные полюса, которые находятся между главными полюсами. Их катушки имеют последовательное соединение с якорем. Дополнительные полюса позволяют избежать появления искр на щетках коллектора, что значительно улучшает коммутацию.

Вращающаяся часть генератора называется ротором или якорем, имеющим цилиндрическую форму. Материалом для него служит листовая электротехническая сталь, толщиной до 1 мм. В пазах якоря размещена обмотка, которая соединяется в цепь с коллектором, установленным на якорном валу. Коллектор представляет собой ряд медных пластин, изолированных между собой. Коллектор взаимодействует с угольными или медными щетками, неподвижно установленными в специальных щеткодержателях.

Принцип действия

Генератор постоянного тока содержит две электрические цепи –якоря и возбуждения. С помощью постоянного тока, проходящего через цепь возбуждения и обмотку возбуждения, происходит создание основного магнитного поля.

В том случае, когда у генератора не два полюса, а четыре, то для обмотки якоря необходимо четыре щетки, попарно соединенные между собой. С помощью этих щеток обмотка разделяется на параллельные ветви, в количестве двух пар.

Когда к первичному двигателю прикладывается посторонняя механическая сила, происходит возбуждение магнитного поля и в якоре появляется электродвижущая сила. После этого, с помощью коллектора и щеток, постоянный ток уходит к внешней цепи. В этом случае устройство работает в качестве генератора. Когда к якорю и обмотке возбуждения подключается постоянное напряжение, то проходящий через обмотку электрический ток, взаимодействует с полем, создавая вращающий момент, который приводит якорь в движение. В таком варианте, генератор функционирует как электродвигатель.

Генератор постоянного тока. Принцип работы, применение.

Современные условия развития производственной сферы предполагают использование большого количества электроэнергии в различных ее видах. Как правило, мы слышим о широком распространении и востребованности переменного тока, однако, во многих сферах используется и постоянный.

Для его получения используется особый вид энергогенерирующего оборудования – генератор постоянного тока. Данное устройство строится на принципе преобразования механической энергии в электрическую.

Как и другим источникам энергии, генератору постоянного тока свойственны такие основные характеристики, как:

  • Номинальное напряжение;
  • Номинальный ток;
  • Мощность;
  • Частота вращения.

В частности, показатели мощности таких установок могут очень существенно колебаться и находятся в диапазоне от нескольких КВт до 10 МВт.

Устройства данного типа, в свою очередь, подразделяются на 2 основные группы в зависимости от способа возбуждения:

  • Генераторы с независимым возбуждением;
  • Генераторы с самовозбуждением.

В первом случае обмотка возбуждения питается от посторонних источников энергии в виде вспомогательных генераторов или аккумуляторов. Также при небольших мощностях в качестве источника питания используется магнитоэлектрический принцип.

Во втором случае обмотка питается от энергии, вырабатываемой самим генератором.

Устройство генератора постоянного тока

Принципом, на котором основывается работа генератора постоянного тока, является электромагнитная индукция и устройство самой установки включает в себя несколько основных узлов.

  • Неподвижная индуктирующая часть;
  • Вращающаяся индуктируемая часть – якорь.

Неподвижная часть включает главные и дополнительные полюса, а также станину. Полюса представляют собой стальные сердечники с размещенными на них катушками с обмоткой возбуждения, как правило, из медного провода.

Вращающийся якорь включает стальной сердечник с медной обмоткой и коллектор.

Впоследствии при работе установки постоянный ток проводится через обмотку возбуждения и происходит образование магнитного потока полюсов.

Обе части генератора объединяются в одну цепь при помощи специальных неподвижных щеток из графита или графитного сплава.

Применение генераторов постоянного тока в жизни

Во многих сферах промышленности широко используются источники постоянного тока, что обусловлено особенностями технологического процесса и на сегодня является безальтернативным вариантом.

В частности, востребованы генераторы постоянного тока в электролизной промышленности, металлургии. Кроме того, часто такие установки применяют на судах, тепловозах, трамваях и в других направлениях транспортной сфере.

В металлургии установки постоянного тока необходимы для использования в работе прокатных станов.


Устройство и принцип действия генератора постоянного тока

Принцип действия генератора постоянного тока

Простейшим генератором является виток, вращающийся в маг­нитном поле полюсов N и S. В таком витке индук­тируется переменная во времени э. д. с. Поэтому при соединении концов витка с контактными кольцами, вращающимися вместе с витком, в нагрузке через неподвижные щетки протекает перемен­ный ток, т. е. такая машина является генератором переменного тока.

Для преобразования переменного тока в постоянный применяют коллектор, принцип дейст­вия которого состоит в следующем. Концы витка 1 (рис. 133) присоединяются к двум медным полукольцам (сегментам), называемым коллек­торными пластинами. Пластины жестко укреп­ляют на валу машины и изолируют как друг от друга, так и отвала. На пластинах помещают не­подвижные щетки 2 и 3, электрически соединен­ные с приемником энергии.

При вращении витка коллекторные пластины также вращаются вместе с валом машины и каж­дая из неподвижных щеток 2 и 3 соприкасается то с одной, то с другой пластиной. Щетки на коллек­торе устанавливают так, чтобы они переходили с одной пластины на другую в тот момент, когда э. д. с, индукти­руемая в витке, была равна нулю. В этом случае при вращении яко­ря в витке индуктируется переменная э. д. с, изменяющаяся сину­соидально при равномерном распределении магнитного поля, но каждая из щеток соприкасается с той коллекторной пластиной и со­ответственно с тем из проводников, который в данный момент на­ходится под полюсом определенной полярности. Следовательно, э. д. с. на щетках

2 и 3 знака не меняет, и ток по внешнему участку замкнутой электрической цепи протекает в одном направлении от щетки 2 через сопротивление r к щетке 3. Однако несмотря на то, что направление э. д. с. во внешней цепи остается неизменным, величина ее меняется во времени, т. е. по­лучена не постоянная, а пульсирующая э. д. с. Ток во внешней цепи будет также пульсирующим. Если поместить на якоре два витка под углом 90° один к дру­гому и концы этих витков соединить с четырьмя коллекторными пластинами, то пульсация э. д. с. и тока во внешней цепи значи­тельно уменьшится. При увеличении числа коллекторных пластин пульсация быстро уменьшается и при 16 пластинах на пару полю­сов становится менее 1%. Таким образом, при большом числе кол­лекторных пластин э. д. с. и ток практически постоянны.

Устройство генератора постоянного тока

Неподвижная часть в машинах постоянного тока является ин­дуктирующей, т. е. создающей магнитное поле, а вращающаяся часть является индуктируемой (якорем).

Неподвижная часть машины (рис. 134, а) состоит из главных полюсов 1, дополнительных полюсов 2 и станины 3. Главный по­люс (рис. 134, б) представляет собой электромагнит, создающий магнитный поток. Он состоит из сердечника 4, обмотки возбужде­ния 7 и полюсного наконечника 8. Полюсы крепятся на станине 6 с помощью болта 5. Сердечник полюса отливается из стали и имеет поперечное сечение овальной формы. На сердечнике полюса поме­чена катушка обмотки возбуждения, намотанная из изолирован­ного медного провода. Катушки всех полюсов соединяются после­довательно, образуя обмотку возбуждения. Ток, протекающий по обмотке возбуждения, создает магнитный поток. Полюсный нако­нечник удерживает обмотку возбуждения на полюсе и обеспечи­вает равномерное распределение магнитного поля под полюсом. Полюсному наконечнику придают такую форму, при которой воздушный зазор между полюсами и якорем одинаков по всей длине полюсной дуги. Добавочные полюсы имеют также сердечник и обмотку.

Добавочные полюсы устанавливают в средних точках меж главными полюсами, и число их может быть либо равным число главных полюсов, либо вдвое меньшим. Добавочные полюсы устанавливают в машинах больших мощностей, и они служат для уст ранения искрения под щетками. В машинах малых мощности добавочных полюсов обычно нет.

Станина отливается из стали и является остовом машины, На станине крепят главные и добавочные полюсы, а также на тор­цовых сторонах боковые щиты с подшипниками, удерживающими вал машины. С помощью станины машина крепится на фундаменте. Вращающаяся часть машины (якорь) (рис. 135, а) состоит из сердечника 1, обмотки 2 и коллектора 3. Сердечник якоря пред­ставляет собой цилиндр, собранный из листов электротехнической стали. Листы изолируются друг от друга лаком или бумагой для уменьшения потерь на вихревые токи. Стальные листы штампуют на станках по шаблону; они имеют пазы, в которых укладываются проводники обмотки якоря. В теле якоря делают воздушные кана­лы для охлаждения обмотки и сердечника якоря. Обмотку якоря выполняют из медного изолированного провода или из медных стержней прямоугольного поперечного сечения. Она состоит из секций, изготовленных на специальных шаблонах и ук­ладываемых в пазах сердечника якоря. Одновитковая секция со­стоит из двух активных проводов, соединенных между собой. Секции могут иметь не один, а много витков. Такие секции называются многовитковыми. Обмотка тщательно изолируется от сердечника и закрепляется в пазах деревянными клиньями. Лобо­вые соединения укрепляются стальными бандажами. Все секции обмотки, помещенные на якоре, соединяются между собой после­довательно, образуя замкнутую цепь. Провода, соединяющие две секции, следующие одна за другой по схеме обмотки, присоединя­ются к коллекторным пластина. Коллектор представляет собой цилиндр, состоящий из отдель­ных пластин. Коллекторные пластины изготовляют из твердотянутой меди и изолируют между собой и от корпуса прокладками из миканита. Для крепления на втулке коллекторным пластинам при­дают форму «ласточкина хвоста», который зажимается между выступом на втулке и шайбой, имеющими форму, соответствующую форме пластины. Шайба крепится к втулке болтами. Коллектор является наиболее сложной в конструктивном отно­шении и наиболее ответственной в работе частью машины. Поверх­ность коллектора должна быть строго цилиндрической во избежа­ние биения и искрения щеток. Для соединения обмотки якоря с внешней цепью на коллекторе помещают неподвижные щетки, которые могут быть графитными, угольно-графитными или бронзо-графитными. В машинах высокого напряжения применяют графитные щетки, имеющие большое пере­ходное сопротивление между щеткой и коллектором, в машинах низкого напряжения — бронзо-графитные щетки. Щетки помещают в особых щеткодержателях (рис. 135, б). Щетка 4, помещенная в обойме щеткодержателя, прижимается пружиной 5 к коллектору. На каждом щеткодержателе может находиться несколько щеток, включенных параллельно. Щеткодержатели укрепляются на щеточных болтах-пальцах, которые, в свою очередь, закреплены на траверсе. Для укрепления на щеточном пальце щеткодержатель имеет отверстие. Щеточные пальцы изолируются от траверсы изоляционными шайбами и втулками. Число щеткодержателей обычно равно числу полюсов. Траверса устанавливается на подшипниковом щите в машинах малой и средней мощности или прикрепляется к станине в машинах больших мощностей. Траверсу можно поворачивать и этим изме­нять положение щеток относительно полюсов. Обычно траверса устанавливается в таком положении, при ко­тором расположение щеток в пространстве совпадает с располо­жением средних точек главных полюсов.

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

ЭЛЕКТРООБОРУДОВАНИЕ

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую.

Принцип работы генератора постоянного тока

При вращении якоря создается магнитный поток, который возбуждает электрический ток в катушках, после чего этот ток (постоянный!!) идет на потребление.

Постоянный возможен при электромагнитной индукции

Генератор постоянного тока- нужно снимать электрическими специальными щетками

Генератор постоянного тока- статер выполнен виде обмоточного возбуждения

Генератор запускается про скорости движения вагона-40 км в час..

При скорости 40км в час запускается генератор постоянного тока, напряжение генератора больше.

Преимущество. Сразу вырабатывает ток. Не нужен выпрямитель. Обмотка возбуждения на полюсах. Акк.батарея заряжается стабильное напряжение в сети, обеспечивается с помощью релегенератора напряжения (_освещение)

 

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПЕРЕМЕННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую.

Принцип работы генератора переменного тока

В связи с тем, что ротор и статор имеет определенные «выступы», и в процессе вращения «выступы» чередуются со «впадинами», создается переменный!!! ток

8кВт- применяется в современных вагонах

Генераторы 2Г008ДцГ

Генератор переменнтого тока- это источник со смещенным возбуждением 2-х обмоточный и 3-х фазный генератор индуктивного типа
Индуктивный генератор (безконтактный) снимается со статера

Внктри крутится ротер.

Разница интервалов между ротером и статерем возникает магнитный поток..

Особенности переменного тока:

  1. не имеет обмотки на ротере
  2. не имеет щеток
  3. обмотки закладываются в позыв статора
  4. обмотка возбуждения виде 2-х кольцевых катушек расположенных в 2-х подшипниковых щетках
  5. ротер выполнен из равномерных расположенных рубцов
  6. три обмотки возбуждения:

-параллельные регулируется напряженение генератора в сети

— последовательные компенсируют реакции обмотки статера

— специальные- для облегчения автоматического регулирования напряжения генератора при малых нагрузках, при высоких скоростях вагонов..

Генератор работает в диапозоне от 650 до 2600 оборотов в минуту

В современных вагонах от 1000 до 4000 оборотов в минуту

 

 

ОСОБЕННОСТИ КОНСТРУКЦИИ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую
Генератор постоянного тока состоит:

Из неподвижной части статора , внутри которого закреплены полюсы (4шт) на концах установлены катушки обмотки возбуждения , они соединяться последовательно друг с другом и подключаются к РНГ (ре напряжение генератора). Внутри статора вращается якорь состоящий из вала, на который напрессован сердечник якоря , имеющий 25 пазов. В позы якоря уложена рабочая обмотка генератора , концы рабочей обмотки выведены на коллекторные пластины , с пластин коллекторных напряжение снимается с помощью графитовых щеток. Щетки расположены на поворотной траверсе , при изменения направления вращения валов генератора , щетки поворачиваются на 90 % , сохраняя тем самым неизменным полярности генераторов .ЭДС в рабочей обмотке возбуждения проводится за счет изменения магнитного потока.

Генератор запускается при скорости движения 40км в час
Реленапряжение сети освещения..

Генератор постоянного тока- нужно снимать специальными электрическими щетками

Преимущества:

-Постоянный ток

-не нужен выпрямитель

— обмотка возбуждения на полюсах

Недостатки:

— потеря мощности на скользящем контакторе между щетками и коллектором.

— сложен в тех.обслуживании и ремонт генераторов

-низкая удельная мощность максимум мощность в 5 киловат.

Генератор- первичный источник, заряд батареи . отличаются по мощности мин – 5 киловат и максимум – 32.

 

 

 

Особенности конструкции вагонных ламп накаливания

Накаливания – повышенная виброустойчивость , специальный цоколь (софитный или штифтовый)

штыревой цоколь – это главная особенность вагонных ламп. Лампа накаливания не более 40 ватт. 50 и 110 вольт.

 

Технико-экономические показатели люминесцентных ламп

1.Сложность конструкций- сложная

2. Сложность ПРА –сложная

3. Цветность- естественный

4. Светоотдача- 35-37 люм на Вт

5. Срок службы- 5000ч

6. Ощущение- неблагоприятные

7. Пожароопасность- нет

8. Вредность – да

9. Боязнь перенапряжения- нет

10. Напряжение- 220V переменный

11. Род тока – переменный однофазный

12. Частота – от 400 до 5000Гц

13. Мощность – 20, 40 Вт

 

Кислотные АБ.

Состоят:

1. деревянные ящики — корпус.

2. эбонитовый бак.

3. карболитовые крышки.

4. положительные пластины — двуокись свинца Pb02 — темно коричневого цвета.

5. отрицательные пластины — губчатый свинец светло-серого цвета.

6. резьбовая пробка, в ней вентиляционные каналы.

7. соединительные шины (для последовательного соединения банок АБ).

8. Положительная и отрицательные клемы.

9. 25% раствор электролита чистой серной кислоты H2S04 дистилорованная вода.

Пример: 26 ВНЦ-400. 26 элементов на 52 В 56 элементов на 112 В.\

В – вагонная Н – никело Ц – цинковая 400 — емкость в А/ч.

Нельзя допускать глубокий разряд, происходит сульфатация пластин (до 47 В, 102 В).

Щелочные АБ

1. положительные пластины;

2. отрицательные пластины;

3. стальной неразборный бак;

4. плюсовая и минусовая клейма;

5. заливное отверстие;

6. резьбовая пробка, в ней вентиляционные каналы;

7. резиновый изолирующий чехол;

8. эбонитовые палочки между «+» и «-» пластинами

9. раствор электролита 10% едкого калия с дистиллированной водой.

Пример: 40 ВЖН 300.

40 — количество банок (52 В)В – вагонные Ж – железно Н – никелевые 300 — емкость АБ в А/ч.

Щелочные АБ дешевле кислотных, обладают большей механической прочностью не выходят из строя в результате действия низких температур, имеют большой срок службы, не требуют такого тщательного как кислотные, вследствие этого щелочные батареи получают все большее распространение. Однако основные недостатки щелочных батарей является низкое КПД (отдача по энергии) и значительное их внутреннее сопротивление, большое количество банок 26 против 40.

Что собой представляет аккумуляторная батарея вагона:

Аккумуляторные батареи размещаются под вагоном в специальных ящиках, оборудованных вентиляцией для удаления взрывоопасной смеси, образующейся при заряде батареи.

Электролит: водный раствор КОН

Причинами взрыва АБ могут быть:неисправность вентиляции аккумуляторной батареи, наличие огня, не плотность контактов соединительных клемм, наличие «глухих» (короткозамкнутых) аккумуляторов

СКНБП (П- позисторная)

Наличие на электрощите дополнительная лампочка питания и вместо легкоплавкого сплава установлен полупроводниковый терморезистор…

В случаи неисправности электрической цепи срабатывает прерывистый сигнал.

В этом случае проводник не срывает стоп-кран, а вызывает ПЭМ или НЛП

При срабатывании постоянного сигнала СКНБП в независимости от местности срываем стоп-кран.Термодатчик в плавки и вставки расплавляется при t 83-93С

В случаи неисправности СКНБ ИЛИ СКНБП на стоянках более 5 минут проводник обязан проверить нагрев буксового узла

 

ЭЛЕКТРООБОРУДОВАНИЕ

ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор – это электрическая машина предназначенная для преобразования механической энергии в электрическую.

Принцип работы генератора постоянного тока

При вращении якоря создается магнитный поток, который возбуждает электрический ток в катушках, после чего этот ток (постоянный!!) идет на потребление.

Постоянный возможен при электромагнитной индукции

Генератор постоянного тока- нужно снимать электрическими специальными щетками

Генератор постоянного тока- статер выполнен виде обмоточного возбуждения

Генератор запускается про скорости движения вагона-40 км в час..

При скорости 40км в час запускается генератор постоянного тока, напряжение генератора больше.

Преимущество. Сразу вырабатывает ток. Не нужен выпрямитель. Обмотка возбуждения на полюсах. Акк.батарея заряжается стабильное напряжение в сети, обеспечивается с помощью релегенератора напряжения (_освещение)

 



Где применяются генераторы постоянного тока

1 октября 2014      Освещение

Генераторами постоянного тока называются устройства, преобразующие энергию механического типа в электроэнергию. В основе их устройства лежит принцип электромагнитной индукции — в движущемся проводнике под воздействием магнитного поля наводится ЭДС.

автономное электроснабжение

 

Генераторы способны производить электрический ток различных значений: постоянный и переменный. Генератор постоянного тока индуцирует переменный ток в обмотке своего якоря, впоследствии впоследствии преобразующийся в коллекторе в постоянный ток. Недостатком выпрямления тока при помощи коллектора является значительный износ его щеток, особенно при высокой скорости вращения якоря генератора.

Их мощность в энергоемких производствах может достигать свыше 10 000 кВт.

 

Где применяются генераторы постоянного тока

 

Основной сферой применения генератора постоянного тока постоянного тока являются заводы и фабрики, строительные площадки, предприятия металлургической и электрохимической промышленности, на тепловозах и судах, для электрической сварки, в конструкциях синхронных машин и т.д. Предпочтение устройствам, производящим постоянный ток, отдается по причине их компактных размеров и высокой надежности несложной схемы, что позволяет увеличить срок их эксплуатации.

В городском электротранспорте (трамваях и троллейбусах) используются тяговые генераторы, работающие как двигатели и генераторы постоянного тока.

Низковольтные генераторы пригодны для освещения самолетов, поездов и автомобилей, а также для зарядки аккумуляторов.

В отдельных случаях машины постоянного тока используются как тахогенераторы, индукторы для проверки изоляции, при взрывных работах в качестве элементов запальных машин.

 

Генераторы постоянного тока широко применяются в установках типа двигатель-генератор для преобразования переменного тока в постоянный с конечной целью питания электродвигателей и прочих нужд в заводских условиях и в лабораториях.




Отправить ответ

avatar
  Подписаться  
Уведомление о