Содержание

Что такое мощность двигателя и крутящий момент. Как рассчитать мощность мотора

Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).

ДВС в машине

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

где:

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

где:

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

где:

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Видео: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя.

Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.

Что такое крутящий момент

Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).

Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.

У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.

Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

как повысить мощность двигателя

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

Калькулятор расчета мощности двигателя автомобиля

Рассмотрим 5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как:

  • обороты двигателя,
  • объем мотора,
  • крутящий момент,
  • эффективное давление в камере сгорания,
  • расход топлива,
  • производительность форсунок,
  • вес машины
  • время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь не те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью

.

Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с.

Как рассчитать мощность через крутящий момент

Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов

.

Крутящий момент

Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя:

Мкр = VHхPE/0,12566, где

  • VH – рабочий объем двигателя (л),
  • PE – среднее эффективное давление в камере сгорания (бар).
График зависимости мощности от крутящего момента
Обороты двигателя

Скорость вращения коленчатого вала.

Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид:

P = Mкр * n/9549 [кВт], где:

  • Mкр – крутящий момент двигателя (Нм),
  • n – обороты коленчатого вала (об./мин.),
  • 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа.

Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36.

Использование данных формул — это самый простой способ перевести крутящий момент в мощность.

А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор.

Но, к сожалению, данная формула отражает лишь эффективную мощность мотора которая не вся доходит именно до колес автомобиля. Ведь идут потери в трансмиссии, раздаточной коробке, на паразитные потребители (кондиционер, генератор, ГУР и т.п.) и это без учета таких сил как сопротивление качению, сопротивление подъему, аэродинамическое сопротивление.

Как рассчитать мощность по объему двигателя

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида:

Ne = Vh * pe * n/120 (кВт), где:

  • Vh — объём двигателя, см³
  • n — частота вращения, об/мин
  • pe — среднее эффективное давление, МПа (на обычных бензиновых моторах оставляет порядка 0,82 — 0,85 МПа, форсированных — 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно).

Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.

Расчет мощности двигателя по расходу воздуха

Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат.

Формула как рассчитать мощность ДВС по расходу воздуха в итоге выглядит так:

Gв [кг]/3=P[л.с.]

Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10—20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.

Расчет мощности по массе и времени разгона до сотни

Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.

Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

формула мощности двигателя используя производительность форсунок

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, водите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Что важнее для разгона – мощность или крутящий момент

 Этот вопрос – одна из главных тем "холиваров" на автомобильных форумах. Оппоненты готовы порвать друг друга, приводя десятки аргументов. А ведь все просто: мощность — это и есть момент! Как так? Сейчас объясним.

В детстве многие люди постарше собирали фантики «Турбо», на них почти обязательно указывались мощность и максимальная скорость машины. Чем больше цифры, тем больше почтения модели авто. Похоже, так и продолжается до сих пор — лишние несколько лошадиных сил часто становятся решающим аргументом «за» или «против» какой-либо машины.

Но вот уже слышны голоса познавших дизельный Дзен о том, что важен только Крутящий Момент, да и подозрительно хорошая динамика более слабых бензиновых моторов со всякими турбинами или разными там системами VVT-i заставляет иногда водителей усомниться в верности принципа «чем мощнее, тем быстрее», а уж про налоги, которые почему-то зависят от мощности, и так все наслышаны.

Так что же такое мощность и как она связана с динамикой?

В паспортных характеристиках машины и на тех самых вкладышах «Турбо» указана максимальная мощность двигателя. Но что она дает машине? И как с ней связан крутящий момент? Постараемся объяснить максимально просто эту важную истину.

Крутящий момент, напомним, есть произведение силы на плечо рычага. А для двигателя — это сила, с которой вращается коленчатый вал двигателя. Измеряется обычно в ньютонах на метр или в килограмм-силах на метр.

formula1.png


График внешней характеристики двигателя

Собственно, момент возникает, если тормозить вращение коленчатого вала каким-то способом — гидротормозом, генератором или заставить тянуть машину. Именно так его и замеряют — тормозят сам двигатель или колеса машины гидротормозом. Для двигателя обычно указывается максимальный крутящий момент, который развивает мотор при полностью нажатой педали газа, с чьей помощью водитель как раз регулирует, какую часть момента может дать двигатель. Осталось понять, как этот самый момент изменяется. Крутящий момент зависит от величины оборотов двигателя и в начале невелик, потом растет до определенного момента, а затем падает. Почему же?

dodge_charger_daytona_hemi_15.jpeg


Пики и спады на графике

В реальной эксплуатации полный момент бывает нужен редко, как раз в тех случаях, когда вы прожимаете педаль газа в пол и надеетесь, что двигатель «вытянет», всё остальное время он меньше максимального на этих оборотах. Но мы уже знаем, что момент меняется не только под воздействием нажатия на педаль газа (механической или электронной), но и с оборотами. На различных оборотах процессы, происходящие в камере сгорания мотора, различны. Дополнительные системы, такие как наддув, системы регулировки фаз ГРМ и прочие, еще сильнее изменяют наполнение камеры сгорания, количество топлива и момент зажигания, и в результате качество и сила рабочего хода зависят от оборотов мотора. Даже если нет никаких систем электронного регулирования, всё равно количество воздуха, попадающего в цилиндр, количество оставшегося выхлопа и оптимальный угол опережения зажигания меняются с оборотами. На самых малых оборотах в цилиндре слишком много остаточных газов или слишком вероятна детонация, потому крутящий момент на малых оборотах обычно намного меньше максимального. На средних оборотах мотор «оживает» — за счет пульсаций во впускном трубопроводе больше воздуха поступает в цилиндры, меньше остаточных газов, потому и растет крутящий момент. Если у машины есть турбина или нагнетатель, то они начинают работать в полную силу. Но с ростом оборотов растут и механические потери на трение поршневых колец, трение и инерционные потери в ГРМ, на разогрев масла в подшипниках и т.д. и т.п., а качество рабочего процесса не улучшается или даже начинает падать. В результате на высоких оборотах момент начинает уменьшаться за счет возрастающих потерь. А у турбонаддувного двигателя в какой-то момент перестает хватать производительности турбины и момент тоже начинает снижаться. Теперь взглянем на график типичного атмосферного (то есть безнаддувного) мотора времен 90-х годов, где есть кривые не только момента, но и мощности.

opel.png


А вот турбомотор схожего объема, у него момент в зоне средних оборотов ограничен электроникой, часто на пределе прочности цилиндро-поршневой группы, и график мощности тоже очень «гладкий». Хорошо заметно, на сколько выше у него мощность в начале и середине графика.

saab.png


Обратите внимание именно на кривую мощности. Она круто идет вверх там, где момент большой, и почти не растет там, где он падает. Объяснение этому очень простое: Мощность это то, сколько работы может выполнить мотор за секунду. Для двигателя внутреннего сгорания мощность в киловаттах в каждой точке графика можно получить, умножив момент двигателя в ньютонах на число оборотов в минуту и разделив на 9549, то есть примерно так:

formula2.png


Следовательно, мощность мотора на любых оборотах зависит только от крутящего момента на этих оборотах, а максимальная мощность получается в точке, в которой момент уже уменьшается, но при этом произведение мощности и оборотов пока еще увеличивается. И чтобы увеличить максимальную мощность, можно просто увеличить момент на высоких оборотах или сделать так, чтобы он уменьшался не так быстро. Взгляните на типичный график высокооборотного мотора Honda — японцы поступили именно так.

honda.png
Надеюсь, достаточно понятна точка зрения тех, кто говорит, что «мощность не важна — важен только момент»? Еще раз: мощность как таковая зависит напрямую от момента и сама по себе является математической, расчетной величиной, которую невозможно измерить отдельно от момента. Крутящий момент, по сути, отражает ту мощность, которая будет доступна на «неполных» оборотах двигателя, а просто при нажатии на газ при обгоне. И чем момента больше, тем лучше! Ведь и мощность на этих оборотах будет выше. А чем больше мощности, тем больше энергии можно придать машине, тем лучше динамика разгона. А максимальная мощность в первую очередь влияет на максимальную скорость машины. Ведь при правильно рассчитанных передаточных числах главной передачи и КПП получается, что максимальная скорость достигается тогда, когда затрачиваемая мощность будет равна мощности мотора. А мощность всех потерь как раз зависит от скорости движения, в первую очередь от сопротивления воздуха и сопротивления качению колес, и в какой-то момент она обязательно совпадет с мощностью мотора, именно эта скорость и будет максимальной. Бывают, конечно, просчеты, когда двигатель или не может развить обороты максимальной мощности, или уже «упирается» в ограничитель, но это бывает не так уж часто.

Дизельный момент

Теперь отвечу на типичный, но простой вопрос: «Почему на дизельных моторах традиционно большой крутящий момент, но при этом сравнительно с бензиновыми у них невысокая мощность?». Всё потому, что у дизеля ограничены рабочие обороты. Из-за высокой степени сжатия дизельных моторов и более медленно горящего топлива дизели хуже работают на больших оборотах, зато у них нет риска детонации, да и турбину можно поставить более эффективную и сложную из-за более низкой температуры газов на выпуске, так что можно подать очень много воздуха и топлива, и момент на малых оборотах получится очень большой. А иногда по мощности они даже будут не так уж далеки от турбонаддувных бензиновых, но момент будет не просто большим, а огромным. Для сравнения приведем характеристики двух трехлитровых моторов от современной BMW 5 series, где будет видно, что дизели эффективны в более низких оборотах. Дизель можно сделать мощнее бензинового мотора, но тогда и так большой момент будет больше еще на четверть, а это означает, что понадобится новая коробка передач и новые карданные валы, способные выдерживать такую мощность. Да и сам двигатель придется сделать еще прочнее и тяжелее. Или можно его «раскрутить», но тогда сложнее будет работать топливной аппаратуре, а допускать дымления и неполного сгорания топлива нельзя.
6.png


Так как же правильно разгоняться?

Тут важно уметь работать с коробкой передач. Для максимального разгона нужно переключаться так, чтобы обороты упали примерно на пик крутящего момента или выше него, но чтобы оставался запас по увеличению оборотов — разгон выше оборотов максимальной мощности будет идти медленнее. Идеальный вариант на гражданских машинах — разгон «от пика момента до пика мощности». Впрочем, обычно на современных моторах электроника просто не даст «перекрутить» мотор сильно выше пика мощности — это называется отсечкой. Можно попробовать представить себе это визуально. Посмотрите на график внешней скоростной характеристики. Мотор при разгоне должен как можно больше работать в зоне, где его мощность максимальна, то есть на высоких оборотах вблизи точки максимальной мощности. И при переключении передач попадать в зону с как можно большей достижимой мощностью. Внизу — графики мощности и момента уже знакомых нам атмосферного Honda Accord Type R и турбированного Saab 9-3. На графиках мы выделили диапазоны оборотов, в которых будет работать двигатель, если включить вторую или третью передачу на скорости около 50 км/ч. Чем больше площадь фигуры под кривой мощности, тем эффективнее разгон.


Если коробка умеет переключаться очень быстро, то идеальным случаем будет КПП с очень «короткой» первой передачей с большим-пребольшим передаточным числом для очень высокого момента. А кроме того, очень большим количеством передач «на все случаи жизни». Короткая первая позволит практически сразу со старта поднимать обороты до необходимых для уверенного разгона, а затем мотор всё время будет работать вблизи своего эффективного максимума. Есть одна проблема. К сожалению, таких коробок передач не бывает. Лучше всего была бы электрическая передача, но ее масса и невысокий КПД (то есть потери мощности при «пропускании» через такую трансмиссию) при мощности меньше нескольких тысяч киловатт делают ее применение нерациональным, если только на гибридах, как например на «Мицубиши Аутлендер PHEV». Казалось бы, есть почти идеальный вариатор, где передаточных чисел бесконечное множество, так как они меняются плавно. Но он тоже страдает низким КПД при больших передаточных отношениях и не умеет менять его очень быстро… И в итоге разгон не лучше, чем у других трансмиссий. Гидротрансформатор на традиционных АКПП еще хуже, но в сочетании с механической коробкой передач обеспечивает и надежность, и приличную скорость. А механические коробки и особенно «роботы», несмотря на неизбежные потери мощности на старте при трении дисков в сцеплении, всё равно оказываются быстрее всех! Нужно лишь очень много передач. Например, десять, как в новой версии коробки DSG. Впрочем, половина из них нужна не для разгона, а для экономичного движения, но об этом в другой раз.


Какой мотор предпочесть — с высоким моментом или высокой мощностью?

Если мощность двух моторов, между которыми вы выбираете, отличается не слишком значительно, то выбирайте более «моментный». Особенно если вы пользуетесь механической коробкой передач. Показатель максимального момента и мощности на промежуточных режимах в данном случае важнее. Если же двигаться приходится постоянно «на пределе», то более тяговитый мотор, да еще и более слабый, преимущества иметь не будет, посмотрите хотя бы на мотоциклы, высокооборотные, но не моментные легко выигрывают у более тяговитых низкооборотных. Но показатели надо оценивать в комплексе. Вернемся к нашим «пятеркам» BMW. Бензиновая 535i разгоняется до 100 км/ч за 5,6 секунды, а дизельная 530d — за 5,7, потому что мощность у бензиновой почти на 50 л.с. выше, причем это — турбонаддувный мотор с хорошей мощностью в зоне средних оборотов тоже и многоступенчатая АКПП, быстрая и современная. Мощности должно быть много, но не только на максимальных оборотах, а величина крутящего момента говорит нам именно о том, на сколько много мощности двигатель выдает при обычном движении. Насколько удобно ускоряться без переключений передач. И абсолютная величина крутящего момента говорит даже меньше, чем указание диапазона оборотов, на которых момент близок к своему максимуму и насколько близки эти обороты к оборотам максимальной мощности. И лучше всего с этим справляется график внешней скоростной характеристики. А вот сама величина момента не толкает вас, ведь у более моментного мотора просто будут другие передаточные числа главной передачи и на колесах будет ровно та же мощность.

<a href=»http://polldaddy.com/poll/8627239/»>Какой мотор предпочтете?</a>


Читайте также:


Крутящий момент и мощность двигателя особенности и нюансы

Рассуждая о главнейшем автомобильном узле — двигателе, стало принято превозносить мощность превыше других параметров. Между тем, вовсе не мощностные способности являются первостепенной характеристикой силовой установки, а явление, называемое крутящим моментом. Потенциал любого автомобильного двигателя напрямую определяется данной величиной.

 

 

Понятие крутящего момента ДВС. О сложном простыми словами

Крутящим моментом применительно к двигателям автомобилей называется произведение значения силы и плеча рычага, или, простыми словами, сила давления поршня на шатун. Исчисляется эта сила ньютон-метрами, и чем выше ее величина, тем резвее машина.

Крутящий момент_torqueКрутящий момент_torque

Более того, мощность двигателя, выражаемая в ваттах, — это не что иное, как умноженное на частоту вращения коленвала значение крутящего момента в ньютон-метрах.

Представим лошадь, которая тащит тяжелые сани и увязает в канаве. Вытянуть сани не получится, если лошадь будет пытаться выскочить из канавы с разбега. Здесь необходимо приложить определенную силу, которая и будет являться крутящим моментом (КМ).

Часто крутящий момент путают с частотой вращения коленвала. В реальности это два совершенно разных понятия. Если вернуться к примеру с лошадью, застрявшей в канаве, частота шага будет символизировать частоту оборотов двигателя, тогда как сила, прикладываемая животным при отталкивании во время шага, олицетворяет в данном случае крутящий момент.

Факторы, влияющие на величину крутящих моментов

Из примера с лошадью легко догадаться, что в данном случае значение КМ будет во многом определяться мышечной массой животного. Применительно к автомобильному двигателю внутреннего сгорания эта величина зависит от рабочего объема силовой установки, а также от:

  • уровня рабочего давления внутри цилиндров;
  • размера поршня;
  • диаметра кривошипа коленвала.

 

Наиболее сильно крутящий момент зависим от рабочего объема и давления внутри силовой установки, и эта зависимость прямо пропорциональна. Другими словами, двигатели с большим объемом и давлением, соответственно, отличаются и большим моментом.

Прямая зависимость наблюдается также между КМ и радиусом кривошипа коленвала. Однако конструкция современных автомобильных двигателей такова, что не позволяет варьировать значения момента в широких пределах, из-за чего возможности добиться повышенного крутящего момента за счет радиуса кривошипа коленчатого вала у конструкторов ДВС невелики. Вместо этого разработчики прибегают к таким способам увеличить момент, как использование технологий турбонаддува, увеличение степени сжатия, оптимизация процесса сгорания топлива, использование впускных коллекторов специальных конструкций, и т.д.

Важно, что КМ увеличивается с ростом оборотов двигателя, однако после достижения максимума на определенном диапазоне крутящий момент понижается несмотря на продолжающийся прирост частоты вращения коленвала.

 

 

Влияние крутящего момента ДВС на характеристики автомобиля

Величина крутящего момента выступает тем самым фактором, который непосредственным образом задает динамику разгона автомобиля. Если вы — заядлый автолюбитель, то могли заметить, что разные автомобили, но с одинаковым силовым агрегатом, по-разному ведут себя на дороге. Или на порядок менее мощный автомобиль на дороге превосходит того, у которого под капотом лошадиных сил больше, причем даже тогда, когда сравнимые авто имеют одинаковые размеры и вес. Причина заключается как раз в разнице в крутящих моментах.

Лошадиные силы можно представить как индикатор выносливости мотора. Именно этот показатель определяет скоростные возможности автомобиля. Но поскольку крутящий момент является разновидностью силы, то непосредственно от его величины, а не от количества «лошадей», зависит то, насколько быстро автомобиль сможет достичь максимального скоростного режима. По этой причине далеко не каждое мощное авто обладает хорошей динамикой разгона, а те, что способны разгоняться быстрее других, необязательно оснащены мощным двигателем.

Вместе с тем высокий крутящий момент еще не гарантирует сам по себе отличную динамичность машины. Ведь кроме прочего, динамика увеличения скорости, а также способность авто к резвому преодолению подъемов участков, зависит от диапазона работы силовой установки, передаточных чисел трансмиссии, отзывчивости педали газа. Наряду с этим нужно учитывать, что момент существенно понижается из-за различных противодействующих явлений — сил качения колес и трения в различных автомобильных узлах, из-за аэродинамических и прочих явлений.

Крутящий момент vs. мощность. Связь с динамикой автомобиля

Мощность — производное такого явления, как крутящий момент, ею выражается работа силовой установки, выполненная за определенное время. А поскольку КМ олицетворяет собой непосредственную работу мотора, то в виде мощности отражается величина момента в соответствующий период времени.

Наглядно увидеть связь между мощностью и КМ позволяет следующая формула:

P=М*N/9549

 

Где: P в формуле означает мощность, М — крутящий момент, N — обороты двигателя за минуту, а 9549 — коэффициент обращения N в радианы в секунды. Результатом вычислений по данной формуле будет являться число в киловаттах. Когда нужно перевести полученный результат в лошадиные силы, полученное число умножают на 1.36.

По сути, крутящим моментом является мощность при неполных оборотах, например, во время обгона. Мощность возрастает по мере роста момента, и чем выше этот параметр, тем больше запас кинетической энергии, тем легче автомобиль преодолевает противодействующие на него силы и тем лучше его динамические характеристики.

При этом важно помнить, что мощность достигает своих максимальных значений не сразу, а постепенно. Ведь с места автомобиль трогается на минимуме оборотов, и затем скорость наращивается. Именно здесь и подключается сила под названием крутящий момент, и именно она определяет тот самый временной отрезок, за который авто достигнет своей пиковой мощности, или, другими словами, скоростную динамику.

 

 

Из этого следует, что машина с силовым агрегатом мощнее, но обладающим недостаточно высоким крутящим моментом, уступит по скорости разгона модели с мотором, который, напротив, не способен похвастать хорошей мощностью, но превосходит конкурента в крутящем моменте. Чем большая тяга, сила передается ведущим колесам и чем богаче диапазон оборотов силовой установки, в котором достигается высокий КМ, тем быстрее происходит ускорение автомобиля.

В то же время существование крутящего момента возможно без мощности, но существование мощности без момента — нет. Представьте, что наша лошадь с санями увязла в грязи. Производимая лошадью мощность в этот момент будет равняться нулю, но крутящий момент (попытки выбраться, тяга), хотя его может быть недостаточно для движения, будет присутствовать.

 

Дизельный момент. Отличия между КМ бензинового и дизельного двигателей

Если сравнивать бензиновые силовые установки с дизельными, то отличительной особенностью последних (всех без исключения) является повышенный крутящий момент при меньшем количестве лошадиных сил.

Крутящий момент_torque

Бензиновый ДВС достигает своих максимальных значений КМ при трех-четырех тысячах оборотов в минуту, но затем способен стремительно нарастить мощность, раскрутившись за минуту до семи-восьми тысяч раз. Диапазон оборотов же коленчатого вала дизельного двигателя обычно ограничен тремя-пятью тысячами. Однако в дизельных установках больше ход поршня, выше уровень сжатия и другая специфика сгорания топлива, что обеспечивает не только более высокий относительно бензиновых установок крутящий момент, но и доступность этой силы едва ли не с холостого хода.

По этой причине смысла добиваться повышенной мощности дизельных двигателей нет: уверенная, доступная «с низов» тяга, высокий коэффициент полезного действия и топливная эффективность полностью нивелируют отставание таких ДВС от бензиновых как по мощностным показателям, так и по скоростному потенциалу.

Особенности правильного разгона машины. Как выжать из авто максимум

Основа правильного разгона — умение работать с коробкой передач и следование принципу «от максимума момента до пика мощности». То есть, добиться наилучшей динамики разгона машины можно только поддерживая частоту вращения коленвала в том диапазоне значений, при которых КМ достигает своего максимума. Очень важно, чтобы обороты совпали с пиком крутящего момента, но при этом должен оставаться запас по их увеличению. Если разгоняться на оборотах выше пиковой мощности, динамика разгона будет меньше.

Диапазон оборотов, соответствующий максимуму крутящего момента, обусловлен характеристиками двигателя.

Выбор двигателя. Какой лучше — с высоким моментом или повышенной мощностью?

Если подвести итоговую черту под всем вышесказанным, то станет очевидно, что:

  • крутящий момент — ключевой фактор, характеризующий возможности силовой установки;
  • мощность — это производная КМ и, соответственно, вторичная характеристика двигателя;
  • прямую зависимость мощности от момента можно увидеть по выведенной физиками формуле Р (мощность) = М (момент) * n (частота вращения коленвала в минуту).

Таким образом, выбирая между двигателем с большим количеством лошадиных сил, но меньшим крутящим моментом, и двигателем с большим КМ, но меньшей мощностью, приоритетным будет второй вариант. Использовать весь заложенный в автомобиль потенциал позволит только такой мотор.

При этом не следует забывать о взаимосвязи динамических характеристик автомобиля с такими факторами, как отзывчивость педали газа и коробка переключения передач. Лучшим вариантом станет то авто, которое не только оснащено двигателем с высоким крутящим моментом, но и имеет наименьшую длину задержки между нажатием педали газа и реакцией двигателя, а также трансмиссию с короткими соотношениями передач. Наличие этих особенностей компенсирует маломощность силовой установки, заставляя автомобиль разгоняться быстрее, чем машина с двигателем похожей конструкции, но с меньшей силой тяги.

Видео: Мощность и крутящий момент двигателя

Видео: Крутящий момент, обороты и мощность двигателя. Простыми словами

Facebook

Twitter

Вконтакте

Google+

Что такое крутящий момент, мощность и обороты двигателя. В чем различия и что важнее

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ, МОЩНОСТЬ И ОБОРОТЫ ДВИГАТЕЛЯ. В ЧЕМ РАЗЛИЧИЯ И ЧТО ВАЖНЕЕ


Добрый день, сегодня мы узнаем, что называется крутящим моментом, мощностью и оборотами двигателя автомобиля, чем различаются между собой показатели, а также, какой параметр считается наиболее важным. Кроме того, расскажем про то, каким образом высчитывается показатель мощности силовой установки, который отражается в лошадиных силах, как определяется крутящий момент за единицу времени и чем характеризуются обороты двигателя транспортного средства. В заключении поговорим о том, для чего автовладельцам необходимо знать показатели мощности, крутящего момента и оборотов мотора машины и как влияют данные параметры на эффективность работы силовой установки того или иного транспортного средства.



Довольно многих автолюбителей, вот уже который год мучает насущный вопрос, касающийся отличий между такими показателями, как мощность и крутящий момент двигателя автомобиля. В чем же отличия этих показателей мотора? Что из них важнее? Большинство из нас привыкли выбирать автомобиль опираясь только на лошадиные силы, а крутящий момент, как правило, не учитывается, но это не всегда правильно. Большое количество водителей порой даже не знают, какое количество оборотов в их машине максимальное. Заметим, что все основные технические характеристики силовой установки своей машины, к которым относятся мощность, крутящий момент и обороты двигателя просто необходимо знать, а также понимать что они означают. А для чего это нужно мы и поговорим в нашей статье.


 

ЧТО ТАКОЕ ДВИГАТЕЛЬ DOHC. ОСОБЕННОСТИ И КОНСТРУКЦИЯ  

 


Сегодня в сети Интернет можно найти большое множество различных понятий и описаний таких показателей, как крутящий момент, мощность и обороты двигателя, но все они довольно сильно запутаны. В нашей статье мы постараемся разобрать данные показатели наиболее доступным языком и использовать наглядные формулы, чтобы кроме слов у нас в понимании отложились наглядные примеры этих достаточно важных параметров любой силовой установки. Справочно заметим, что мощность и крутящий момент являются такими показателями мотора, которые друг без друга в принципе существовать просто не могут. Поэтому данные показатели, в какой то степени даже дополняют друг друга, так как одна характеристика напрямую зависит от второй.

1. МОЩНОСТЬ ДВИГАТЕЛЯ: ПОНЯТИЕ И КАК ИЗМЕРЯЕТСЯ

Мощность любой силовой установки измеряется в лошадиных силах или киловаттах (Ватты/Вт). Справочно заметим, что также в Ваттах мы измеряем мощность домашней лампочки накаливания, которая установлена в светильнике. А куда же делись лошадиные силы, могут задать вопрос многие автолюбители? А все довольно просто, исторически так сложилось, что первоначально перевозимые грузы, которые переносили лошади на определенное расстояние сопоставлялись с единицей времени. Затем было установлено, что одна лошадь способна генерировать электрический ток от динамомашины, причем за 1 секунду ею выдавалось около 735 Ватт или 75 килограмм на 1 метр высоты за секунду времени. Таким образом, при переводе Ватт в лошадиные силы получается следующее, что 1 Киловатт равняется 1000 Ваттам, а 1000 Ватт в свою очередь — это 1,36 лошадиной силы. Поэтому 1 киловатт мощности мотора всегда равен 1,36 лошадиной силы.



На сегодняшний день не все автопроизводители указывают мощность силовых установок в лошадиных силах. К примеру немецкие автомобильные производители зачастую указывают мощность в киловаттах. Поэтому, когда мы видим в технических характеристиках автомобиля мощность мотора, прописанную в киловаттах, то чтобы получить привычные лошадиные силы, необходимо просто первую величину поделить на число 1,36. В том случае, если нужно наоборот из лошадиных сил получить киловатты, то мы просто лошадки умножаем на число 1,36.



Очень важно учитывать тот момент, что мощность бензинового или дизельного двигателя является величиной не постоянной. Так например, если в характеристиках нашего мотора указан показатель в 125 лошадиных сил, а другая силовая установка обладает 115 лошадиными силами, то по логике первая силовая установка должна обогнать по скорости вторую, за счет большей мощности, но это совсем не так. Потому что не всегда в скорости важна мощность мотора, необходимо еще учитывать такой параметр, как крутящий момент двс и расстояние дистанции. Мощность любого двигателя меняется в зависимости от оборотов мотора. Номинальная величина мощности, как правило, указывается при определенных максимальных оборотах силовой установки. Например многие современные машины получают свою номинальную мощность при 5000-6000 оборотов в минуту. Таким образом, например 125 лошадиных сил получаются при 5500 оборотов в минуту, а при тех же 3000 оборотов в минуту, мощность может быть уже почти в 2 раза меньше от максимальной. 


Вот поэтому, когда мы видим в документации на свой автомобиль ту или иную величину мощности двигателя, то мы должны понимать, что этот показатель получен на максимальных оборотах мотора. Что касается бензиновых силовых установок, то на 1500-2000 оборотах в минуту, мощность снижается в несколько раз. Поэтому, чтобы из бензинового мотора выжать, как можно больше лошадей, необходимо очень активно работать педалью газа и селектором механической коробки передач. Например, чтобы произвести резкое ускорение в процессе обгона, то перед этим действием, желательно держать бензиновым двигателем около 4500-5000 оборотов в минуту. Вот поэтому довольно часто, чтобы выжать из мотора максимальную мощность, водителю приходится понижать передачу в трансмиссии. Справочно заметим, что ни один двигатель на планете не может сразу же раскрутиться до необходимой величины, на это требуется определенный временной интервал и вот здесь на помощь силовой установке приходит такой показатель, как крутящий момент.


2. КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ: ПОНЯТИЕ И КАК ИЗМЕРЯЕТСЯ

Теперь мы понимаем, что мощностью двигателя является вырабатываемая энергия силовой установкой в процессе ее функционирования. Какая же связь одного показателя с другим? Что ни есть прямая, так как именно вырабатываемая мотором энергия преобразуется в крутящий момент на коленвале двигателя автомобиля. Такая энергия у автомехаников называется выходной. Затем энергия изменяется в трансмиссии с помощью необходимых передаточных чисел шестерен и потом передается на приводную ось или ведущий мост с колесами транспортного средства.



Таким образом, сам по себе крутящий момент говоря простым языком, как бы толкает автомобиль в механическом плане, а мощность измеряемая в киловаттах или лошадиных силах именно создает такой момент. Дело в том, что тронуться с места и поехать сможет даже самый маломощный мотор, так как для этого много мощности совсем не требуется, благодаря работающим передаточным числам, которые оптимально подобраны в коробке передач того или иного транспортного средства.

Однако тронутся с места и поехать этого недостаточно, чтобы обладать хорошей скоростью во время движения. Мало кому захочется ехать со скоростью в 30-40 километров в час, ведь хочется еще и разгоняться иногда. Вот для этого и требуется крутящий момент, которого будет оптимально хватать при всех скоростных диапазонах. Необходимый крутящий момент достигается с помощью нужной мощности силовой установки и оптимальным подбором шестерен в коробке передач и приводе, а также в мостах, при их наличии в автомобиле. 


Итак крутящим моментом является сила, которая умножена на плечо ее приложения, которую может выдать двигатель автомобиля для преодоления сопротивлений движению в тот или иной временной интервал. Крутящий момент всегда измеряется в ньютонах, а величина рычага в метрах. В аббревиатуре показатель крутящего момента отражается в виде произведения «HхM» (Ньютон на метр), то есть это сила с которой 0.1 килограмма давит на конец рычага (поршень) мотора с длиной в 1 метр. Как мы знаем функции рычага в силовой установке всегда играет кривошип коленвала, через который осуществляется крутящий момент. Стоит также понимать, что длина кривошипа зачастую не равняется 1 метру, однако исконно принято вычислять данную величину исходя из таких характеристик.


От крутящего момента напрямую зависит время достижения двигателем максимальной мощности, а следовательно период разгона с общей динамикой во время движения и набора скорости. Крутящий момент, чем то похож на величину, которая собирает все доступные двигателем лошадиные силы в единое целое, а затем за счет их просто раскручивает силовую установку. Причем, чем больше соберет лошадей в единое целое показатель, тем быстрее раскрутится двигатель и ускорится транспортное средство.


 

3. ОБОРОТЫ ДВИГАТЕЛЯ: ПОНЯТИЕ И КАК ИЗМЕРЯЕТСЯ

Следующим, также не менее важным показателем любого бензинового или дизельного мотора является параметр оборотов силовой установки. Дело в том, что максимальный крутящий момент способен образовываться при разных оборотах двигателя. Например, как мы говорили ранее, на бензиновом моторе максимум достигается на 5-6 тысячах оборотов в минуту, а на дизельном двигателе уже на 3-3,5 тысячах оборотов в минуту. Чтобы тому или иному типу силовой установки выйти на нужную величину оборотов, необходимо затратить определенный промежуток времени.



По мнению специалистов по обслуживанию и ремонту автомобилей, считается намного лучше для машины, если силовая установка развивает максимальный крутящий момент, как можно раньше, например на 1750-2000 оборотов в минуту. Дело в том, что если двигатель развивает крутящий момент, как говорится на «низах», то времени на его раскрутку понадобиться намного меньше, следовательно транспортное средство намного быстрее сможет набрать нужную скорость. 

Таким образом, отвечая на наш вопрос, который мы задали в начале нашей статьи: «Какой показатель двигателя самый важный?», отметим то, что все величины стоят на одной ступени, как мощность с крутящим моментом, так и обороты мотора. Почему важны все показатели? Потому что, благодаря тем же оборотам достигается определенная величина крутящего момента и чем они ниже, тем лучше для машины, так как двигатель сможет раньше выдать максимальную мощность.


4. КАКОЙ ПОКАЗАТЕЛЬ МОТОРА НАИБОЛЕЕ ВАЖНЫЙ

Как мы сказали ранее, однозначно выделить самый важный показатель силовой установки из вышеописанных просто не представляется возможным, так как все они напрямую зависят и дополняют друг от друга. Например крутящий момент позволяет нам быстрее развить максимальную мощность на той или иной величине оборотов мотора. Если рассматривать дизельную силовую установку, то она просто не сможет крутиться на максимальных оборотах бензинового мотора, поэтому ее максимальная мощность на пике будет ниже. 

 

Вот поэтому зачастую дизельные двигателя устанавливаются на коммерческий транспорт, так как им не нужна высокая скорость, но очень важна тяга, причем на низких оборотах. Или другая ситуация, для любителей резких стартов с места идеально подойдут моторы с турбонагнетателями, которые способны раскручиваться до 9000 оборотов в минуту и выстреливать пулей с места.



Хотя, что касается того, какие двигатели лучше бензиновые или дизельные, то это довольно субъективный выбор. Справочно заметим, что на сегодняшний день технологии в двигателестроении достигли таких высот, что бензиновые моторы по некоторым показателям стали очень похожи на дизельные. Таким примером могут быть инновационные моторы от компании Mazda поколения SkyActiv, которые сейчас устанавливаются на большинство моделей автопроизводителя. Чем же похож SkyActiv на дизельный мотор? А похож он увеличенной степенью сжатия, которая значительно приближена к дизельному агрегату, однако при этом он все равно бензиновый с высокими оборотами.  

Таким образом, новые бензиновые моторы кроме схожей степени сжатия с дизельными силовыми установками уже имеют и почти одинаковый крутящий момент. По мнению большинства специалистов, будущее в двигателестроении именно за такими инновационными моторами, как SkyActiv. Справочно заметим, что мы не берем в расчет по всем вышеописанным показателям гибридные, а также силовые установки электромобилей, так как их величины порой превосходят показатели бензиновых и дизельных агрегатов, причем вместе взятые. 



Видео: «Мощность, крутящий момент и обороты двигателя: различия, измерение и что важнее?»


Подводя итог вышесказанному хочется напомнить, что мощность двигателя определяет максимальную скорость автомобиля, а крутящий момент в свою очередь отвечает за то, как быстро силовая установка сможет достигнуть эту мощность. Поэтому, если в нашем автомобиле высокий крутящий момент, то не стоит думать, что он будет быстрее другой машины, в котором он ниже, так как мотор может проигрывать в частоте вращения. Таким образом, крутящий момент, как бы толкает транспортное средство вперед, а мощность данный момент создает. Поэтому стоит покупать лошадиные силы, а передвигаться на крутящем моменте.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕДЕЛИТЕСЬ С ДРУЗЬЯМИ. ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

Мощность момент — Энциклопедия журнала «За рулем»

Может ли бульдозер обогнать «формулу 1»? Может, но только на очень короткой дистанции

Часто эксперты автомобильных изданий, рассказывая о выдающейся динамике машины, в первую очередь превозносит огромный крутящий момент двигателя, оставляя мощности роль второго плана. Мол, благодаря именно моменту машина ровно и напористо разгоняется в широком диапазоне оборотов и скоростей. Особенно востребовано это качество на высших передачах, – ведь тяговые силы и ускорения на них в любом случае не столь велики, как на первой или второй передаче. А для безаварийного движения в потоке транспорта возможность быстро прибавить скорость зачастую играет судьбоносную роль. Ездить на таком автомобиле даже психологически легче. И все же, когда нужно быстрей разогнаться, что важней – мощность или крутящий момент?
Сразу отметим: чаще всего эти два параметра «конфликтуют»… в головах журналистов, охотно повторяющих признанные публикой «истины» без какого-либо их анализа. На самом же деле смешно рассматривать мощность в отрыве от крутящего момента и наоборот. Первая показывает энергию, ежесекундно вырабатываемую двигателем, тогда как крутящий момент – всего лишь силовой фактор, показывающий, как нагружен при работе коленчатый вал. Крутящий момент может существовать и сам по себе, без мощности. Например, при неожиданной остановке перегруженного двигателя на крутом подъеме, в песке, при буксировке тяжелого прицепа в какой-то миг момент еще есть, а движения уже нет. А в некоторых механизмах можно обнаружить и длительно действующий на какой-нибудь вал момент, удерживающий его от поворота. Например, в рулевом механизме, когда мы лишь удерживаем управляемые колеса в нужных положениях, тогда как дорога пытается их нарушить. А самый типичный пример: пытаясь открутить «прикипевший» болт, ключ удлинили метровой трубой, – а болт ни с места. Момент огромный, а работа не идет. А коли нет работы – то нет и мощности.

Тут впору вспомнить школьную физику. Нарисуйте круг радиуса R – это будет сечение вала – и приложите к нему «касательную» силу F. Крутящий момент этой силы М = F • R. За один оборот вала сила F пройдет путь 2πR – и выполнит работу: А = F • R • 2π = М • 2π. А работа за n оборотов: А = М • 2π • n. Если n – число оборотов в минуту, то работа за одну секунду – то есть, мощность – составит N = М • 2πn /60.
Выражение 2π n /60 = 0,1047 n = ω – угловая скорость вала. Итак, N = М • 0,1047 n (Формула [1]).
Но мы имеем дело не только с вращающимися деталями, но и движущимися линейно. В этом случае в формуле (1) момент М заменим силой F, а угловую скорость ω – линейной v. Получим: N = F • v (Формула [2]).
Эти формулы равноправны. Замерив, например, тяговую силу колес, умножим на достигнутую машиной скорость – и найдем затрачиваемую мощность. Но если крутящий момент на ведущей оси умножить на угловую скорость колес, получим то же самое.
Итак, мощность – это работа (или энергия) израсходованная или произведенная за 1 секунду. Конечно, о «законе сохранения энергии» знает каждый. Говоря по пионерски, она «не возникает из ничего», но и не исчезает, не оставив следа. Так, лишь около четверти тепловой энергии, получаемой двигателем от сгорания топлива, превращается в механическую, соответствующая мощность (эффективная) тратится на движение машины. Большая же часть полученной в цилиндрах двигателя теплоты идет на «обогрев» окружающего нас мира.
Эффективная мощность тоже доходит до ведущих колес не вся – до 15 % ее может рассеять в виде тепла трение в узлах и агрегатах трансмиссии. Но для нас важней другое: если при открытом дросселе (или при полной подаче топлива в дизель) двигатель выдает на колеса сколько-то киловатт, то это – его «потолок». Никакими простыми механизмами вроде коробок передач, редукторов и т. п. превысить эту величину невозможно – этого «закон сохранения» не допустит.
Итак, крутящий момент – это удобный для нас «инструмент», связывающий процессы в двигателе с трансмиссией машины и ведущими колесами. Но не более того! Ракетчики, например, запрягают пламя напрямую, получают гигантские тяги и мощности, но о крутящих моментах вспоминают лишь в расчетах турбонасосных агрегатов, – да и то, если двигатели не твердотопливные!
Из формулы (1) видно, что для получения достаточной мощности вовсе не обязателен огромный крутящий момент, ведь в произведении два сомножителя. Почему бы, например, не увеличивать мощность при постоянном моменте, наращивая угловую скорость в каком-то диапазоне оборотов? При этом мощность растет по оборотам линейно. А постоянство момента в заданном диапазоне – не чудо, которым некоторые почему-то восторгаются, а всего лишь признак постоянства тяговых сил. Если пренебречь сопротивлением воздуха (к примеру, на первой передаче оно невелико), то и ускорение машины в этом диапазоне постоянное. Это довольно удобно для водителя. Но спросим себя: если бы в начале диапазона момент был таким же, а ближе к пресловутым «верхам» стал больше, стал бы с таким «подхватом» автомобиль хуже? – Вряд ли. Разве только что-нибудь нарушилось бы в смысле экологии.
Мощность можно менять и при постоянных оборотах. Пример: мы ехали со скоростью 90 км/ч по горизонтальному шоссе, а с началом подъема, дабы сохранить скорость, пришлось больше открыть дроссель. Это увеличение момента в чистом виде.
Итак, имеем дело с формулой (1). К примеру, перед нами скромный двигатель грузовика с моментом 35 кгм при оборотах 3000 в минуту. Какова мощность? Тут отметим, что в расчетах всегда важен правильный выбор единиц измерений параметров. Угловую скорость измеряют в 1/сек. А момент? – В старых единицах это кгм. Получаем: N = 35 кгм . 0,1047 . 3000 1/сек = 10993 кгм/сек ≈ 146,6 л.с. А в современной системе СИ: 35 кгм = 343,35 Нм. Тогда N = 343,45 Нм • 0,1047 • 3000 1/сек ≈ 107846 Вт.
На всякий случай напомним, что 1 лс = 75 кгм/сек = 75 • 9,81 Нм/сек = 735,75 Вт. Поэтому 107846 Вт ≈ 146,6 л.с.
А теперь прикинем мощность «формульного» двигателя с таким же скромным моментом, но при оборотах 18 тысяч! Результат – 880 л.с. (647 кВт), которые обеспечивают машине роскошную динамику. Никакого чуда нет: чем больше циклов совершит наш «моментик» за одну секунду, тем больше и совершенная им работа. Еще пример. В авиатехнике ныне практически господствуют газотрубинные двигатели. Повторив наш расчет для небольшого двигателя, с оборотами свободной турбины 40 тысяч в минуту, получим мощность около 1950 л.с. или 1438 кВт. Момент турбины невелик, но ведь воздушный винт приводится от нее не напрямую, а через редуктор, – а уж «мощи» ему хватает!
Но вернемся к автомобилю. Как уже сказано, любому комфортней ездить на машине, у которой под капотом достаточно и мощности, и момента. Но многим приходится ездить на скромных авто, возможности коих, как нынче говорят, «очень бюджетные»! Всякий, кто не умеет вовремя переключать передачи, с ними испытывает неприятности. Значит, надо учиться, друзья. Ну а что делать владельцу авто с АКП? На смену недовольству двигателем зачастую приходят претензии к автомату. Нередко – справедливые, ведь у АКПП тоже случаются специфические болячки, требующие ремонта. Но часто они оказываются не обоснованными: современный автомобиль, насыщенный электроникой и настроенный изготовителем на строгое выполнение жестких экологических норм, вовсе не обязан подстраиваться под любую российскую лихость!
Гусеничному трактору дернуться и оборвать сцепку – плевое дело. Это похоже на выстрел из ружья – можно на миг и «формулу I» опередить. А дольше – никак. Ружье от ракеты отличается принципиально: последняя сохраняет нужное ускорение достаточно долго. В свое время, при стартах к Луне гигант «Сатурн 5» массой свыше 3100 т отделялся от пускового устройства мягко, как пассажирский поезд, – с ускорением чуть больше 1 м/сек2. А минут через пять, по мере выгорания топлива, настолько «терял в весе», что его скорость перед выключением первой ступени составляла 3 км/сек.
Низшая передача бульдозера крайне «коротка»: чуть «перекрутил» – тяга упала. А другие не лучше, – вон и «формула» уже растворилась за горизонтом, так что для серьезных игрищ «мощи» на гусеницах маловато.
Если пренебречь разницей в КПД передач (она невелика), то на любой передаче машину движут одни и те же киловатты. Но движут по-разному. Момент и тяговая сила на ведущих колесах подчиняются «золотому правилу»: сколько процентов выиграешь в скорости, столько потеряешь в силе. Это показывают рис. 1 и 2. Если двигатель заведомо слаб, с ним сильно не разгонишься.

Рис. 1. Величины мощности N1 … N5 на ведущей оси не зависят от включенной передачи. Точки пересечения кривой Nсопр с кривыми N3, N4 и N5 дают информацию о максимальных скоростях автомобиля на этих передачах. Здесь самая скоростная на горизонтальной дороге в безветрие – четвертая.

Вся история современной транспортной техники – это непрерывная борьба за большие мощности. У наиболее знаменитых ракетоносителей они давно превысили 100 миллионов кВт. Это не ошибка — именно 100 000 000 000 Вт, или 100 ГигаВатт. И хотя притязания автомобилиста не столь велики, «прохватить» на динамичной машине всякий не прочь.
Главные враги любителя скорости – не гаишники, а силы, тормозящие движение, – от этих не откупишься! Мощность сопротивления воздуха вкупе с мощностью шинных потерь показаны на рис. 1 линией Nсопр.
(Желающие посчитать, могут воспользоваться следующими формулами. Nсопр. = Nw + Nf. Мощность аэродинамических потерь Nw для автомобиля весом 15000 Н при плотности воздуха 1,25 кг/м3, Сх = 0,3 и лобовой площади S = 2 • м2 составляет: Nw = (0,3 • 2 • 1,25)/2 • v3 = 0,375 v3 Вт. А мощность шинных потерь Nf = 0,015 • 15000 • v = 225 v Вт. При 100 км/ч Nсопр составляет лишь 14,5 кВт. А при 200 км/ч – 77 кВт. Разница впечатляет?)
Колеса автомобиля, борясь с мощностями сил сопротивления, при максимальной скорости полностью расходуют мощность, получаемую от двигателя. Но ее характеристика (например, показанная кривой N4 на рис.1) при полностью открытом дросселе похожа на гору с округлой макушкой, тогда как характеристика мощности сопротивлений Nсопр. поднимается как крутая парабола. Чтобы полностью использовать арсенал мощности двигателя – и получить максимум скорости V4 (на горизонтальной трассе, без ветра), передаточное число трансмиссии и размер шин подбирают так, чтобы кривая Nсопр пересекла кривую N4 возле вершины. Максимальные скорости на третьей и пятой передачах (V3 и V5) существенно ниже. Но на спуске или с ветром вдогон выгодней может стать пятая передача, а на подъеме или с ветром в лоб – третья.
Другие враги скорости – подъем дороги и встречный ветер. Подъем с углом всего 1,5% добавит к потерям в шинах еще столько же. Но еще коварней ветер. Его скорость сложится со скоростью машины относительно дороги, – и уже эту сумму в расчете затрат мощности надо возвести в куб! При скорости по спидометру 36 км/ч (10 м/сек) и ровном встречном ветре 5 м/сек мощность Nсопр вырастет лишь на 0,9 кВт, а вот при 180 км/ч (50 м/сек) – аж на 15,5 кВт. Но придуманный нами автомобиль так ехать не может… Маловато мощи! Максимальная скорость снизится почти на 20 км/ч.

Рис. 2 — Так зависит крутящий момент (М1….М5) или тяговая сила (Fтяг 1 …Fтяг 5) на ведущей оси от включенной передачи. При коэффициенте сцепления шин с дорогой 0,7 ведущая ось, нагруженная половиной веса машины (Gавтом = 15000 н), может создать реальную тяговую силу не больше Fмакс. доп. = 5250 Н.

На рис.2 величины крутящего момента М1…М5, а заодно и теоретические тяговые силы F1…F5 на ведущей оси, показаны одними и теми же кривыми, – ведь тяговые силы пропорциональны моментам. Величины сил – на вертикальной оси справа. Но тут важно учесть следующее.
Разгоняет машину не вся тяговая сила, а лишь избыточная – то есть разница между полной тяговой силой колес и сопротивлением воздуха. Отношение этой силы к весу машины академик Чудаков назвал динамическим фактором D. На первой передаче сопротивление воздуха мало, его можно не учитывать – считать, что машину разгоняет полная сила Fтяг.1. Но отталкиваться от дороги сильней, чем позволяет сцепление шин, невозможно! Если, например, ведущая ось несет половину веса машины – 7500 Н, то при коэффициенте сцепления φ = 0,7 тяговая сила не может превысить 35% ее веса. Это неплохо согласуется с такой официальной характеристикой любого автомобиля как предельно возможный угол подъема. С «моноприводом» трудно получить больше. Правда, у машины с задним приводом на подъемах ведущие колеса несколько догружаются весом машины, а вот передний тут невыгоден. Лучшая схема, но сложная и дорогая, – полный привод (конечно, не с такой скромной мощностью, как у «Нивы» или УАЗа!).
Если избыточная сила (на первой передаче, например) слишком велика, машина «шлифует» дорогу. Дело нелепое, нужно перейти на следующую передачу. А вот при разработке нового авто конструктор учитывает высокую мощность двигателя и ее следствие – тяговые силы в передаточных числах трансмиссии. Передачи проектируются как достаточно «длинные», расширяющие диапазон скоростей при достаточных ускорениях. А это значит, что и при более высоких скоростях действуют нужные тяговые силы (или моменты) на колесах. Иначе говоря, реализуется весь арсенал мощности! Значит, она все же важнее.

Споры на тему влияния мощности-момента ведутся давно, и конца им не видно. Вроде бы сто раз уже объясняли самыми разными способами, что тут к чему, а воз и ныне там. Вызывает неподдельный интерес, откуда все же берется заблуждение и почему оно такое устойчивое?
Причин видится две. Одна из них в том, что мощность есть функция от момента. Зависимость мощности от момента стоит барьером, который преодолеть оказывается непросто. Что странно. Поскольку очевидность того, что мощность есть функция не только от момента, но и от оборотов, не оспаривается, и тот факт, что у разных двигателей бывает весьма большой разброс по соотношению мощности к моменту, также не подвергается сомнению. То есть существует молчаливое согласие с тем, что мощность есть функция от двух аргументов — оборотов и момента, но при этом зависимость от оборотов как бы игнорируется. Почему?
А в этом и есть вторая, главная причина заблуждения. И ключевая фраза здесь: «Человек совершенно может не иметь понятие про мощность.А вот разницу в ускорении на 3 и 4 передаче он вполне способен почувствовать.» Ясно, что на динамику автомобиля оказывают большое влияние и передаточные числа КПП. На графике 1 видны кривые мощности двигателя, смещенные в зависимости от разных передаточных чисел и кривая сопротивлений. Видно, что с ростом передаточного числа динамика резко возрастает. Это очевидно и вопросов не вызывает. Странно, что не менее очевидный факт, что бОльшая часть времени при разгоне приходится вовсе не на 1 и 2 передачи, а на 3-4, при этом упускается из виду.
При разгоне здравомыслящий водитель пользуется всеми четырьмя передачами и весьма широким диапазоном частот вращения двигателя. При этом редко задумывается о том, что динамика разгона на высокой скорости мала и плохо ощущается, но именно на нее и приходится львиная доля времени разгона (по той простой причине, повторю, что на высших передачах динамика хуже и потому занимает больше времени). Хорошо ощущается динамика разгона на низших передачах, в диапазоне низких и средних оборотов (дальше водитель двигатель раскручивает редко). И что выходит? А выходит, что «низовой», моментный двигатель дает ощущение уверенного и бодрого разгона по той простой причине, что легко и весело страгивает и начинает разгонять автомобиль. А по достижении скорости ощущения становятся слабыми, и оценить разницу в разгоне 100- и 120 сильного моторов на 4-5 передачах, способен не каждый. Потому и кажется, что момент определяет динамику. По ощущениям. А ощущениям человек склонен верить очень сильно, даже вопреки логике и здравому смыслу.

Проповедующие формулировку «скорость определяется мощностью, а динамика разгона — моментом двигателя» могут убедиться в своем заблуждении, решив простую задачу.
Вводные
1. Равномерный подъем на некоторую высоту равносилен равномерному ускорению, поскольку увеличивает потенциальную энергию тела mgh*. (что можно объяснить — чем с большей высоты упадет, тем сильней ударится).
2. Поднимаем равномерно груз весом 75 кг на высоту 1 м за 1 с.
3. Имеется черный ящик, в котором спрятан мотор неизвестной природы и, возможно, редуктор с КПД=1.
Вопросы.
1. Какая мощность должна быть в моторе, спрятанном внутри черного ящика?
2. Какой момент должен быть в моторе, спрятанном внутри черного ящика?

Подъем указанного груз на нужную высоту за время аналогичен разгону по горизонтали той же массы с ускорением g0.5.
Если ускорение определяется моментом — просто назовите цифру
Если ускорение определяется мощностью — тоже просто назовите цифру
Если цифру назвать не удается, значит параметр может быть самым разным и роли не играет.
Вы можете разгонять тело с заданным ускорением (или поднимать его вверх), меняя крутящий момент по своей прихоти (и устанавливая каждый раз соответствующий редуктор). Вы можете отталкиваться от параметров редуктора, и всякий раз требуемый момент будет меняться и зависеть от передаточного отношения этого редуктора. Но всегда мощность будет оставаться одной и той же, неизменной величиной — для подъема груза 75 кг на 1 м за 1с понадобится ровно одна лошадиная сила или 0,73549875 кВт

Можно поступить и следующим образом.
Берите любой момент, который причина разгона, берите любой редуктор и разгоните тело 75 кг до скорости 3.13 м/c за 1 с.
Ограничение только по мощности — она не должна превышать 0.9 л.с.
Есть ли решение у этой задачи? Если нет — то почему?
Ответ.
Задача не имеет решения по той простой причине, потому что невозможно обеспечить заданную динамику — для нее не хватит мощности. Каким бы ни был момент.
Вывод. Момент двигателя для разгонной динамики не имеет значения, все решает мощность.

* Пояснение Вы поднимаете 75 кг получаете от этого энергию mgh. Она преобразуется так:
поскольку a = V2 / 2h, а ускорение а у нас равно g, то V = (2hg)0.5.
Кинетическая энергия тела E = mV2/2 = m2hg/2 = mgh.

Смотри также главу Как движется автомобиль

Литровая мощность и методы форсирования двигателей

Литровой мощностью называют номинальную эффективную мощность, снимаемую с единицы рабочего объема двигателя:

Nл = Ne/iVh = pen/(30t)

Чем выше литровая мощность, тем меньше рабочий объем и соответственно меньшие габариты и массу имеет двигатель при одинаковой номинальной мощности.

По литровой мощности оценивают степень форсированности. Двигатели, имеющие высокие значения Nл называют форсированными.

Форсирование двигателя — это комплекс технических мероприятий, способствующих повышению литровой мощности.

Возможные способы форсирования двигателей следуют из выражения; Nл увеличивается с увеличением номинальной частоты вращения n, среднего эффективного давления ре или при применении двухтактного рабочего процесса.

Увеличение литровой мощности посредством повышения n широко используется в карбюраторных двигателях, для с временных моделей которых n достигает 6500 мин-1 и выше.

Дизели грузовых автомобилей, как правило, имеют номинальную частоту вращения, не превышающую 2600 мин-1.

По этой причине литровая мощность дизелей без наддува находится в пределах от 12 до 15 кВт/л и существенно уступает аналогичному показателю карбюраторных двигателей, имеющих Nл = 20…50 кВт/л.

Однако в настоящее время в ряде конструкций дизелей легковых автомобилей трудности форсирования их по частоте вращения удается преодолеть. Появляется все большее количество дизелей с номинальной частотой вращения n = 4500…5500 мин-1 и литровой мощностью до 20 кВт/л.

Для дизелей форсирование по частоте вращения менее характерно, чем для двигателей карбюраторных, для которых этот способ повышения литровой мощности является одним из основных.

Как следует из анализа зависимости, при переходе с четырехтактного рабочего цикла на двухтактный литровая мощность должна увеличиваться в два раза.

В действительности же при этом Nл увеличивается всего лишь в 1,5… 1,7 раза вследствие использования лишь части рабочего объема на процессы газообмена и снижения качества очистки и наполнения цилиндров, а также в результате дополнительных затрат энергии на привод продувочного насоса.

Большая (на 50…70%) литровая мощность — существенное достоинство двухтактного двигателя. Однако недоиспользование части рабочего объема цилиндра для получения индикаторной работы приводит к тому, что они имеют заметно более низкие энергоэкономические показатели, чем аналогичные четырехтактные двигатели.

К недостаткам двухтактных ДВС следует отнести сравнительно большую тепловую напряженность элементов цилиндропоршневой группы из-за более кратковременного протекания процессов газообмена и, следовательно, меньшего теплоотвода от деталей, формирующих камеру сгорания, а также большего теплоподвода к ним в единицу времени, что объясняется вдвое более частым следованием процессов сгорания.

Большим недостатком двухтактных карбюраторных двигателей является потеря части горючей смеси в период продувки цилиндра, что значительно снижает их экономичность.

Особое место в ряду мероприятий, направленных на повышение литровой мощности, занимает форсирование двигателей по среднему эффективному давлению рс.

Однако существенного увеличения Nл путем повышения рс удается достигнуть лишь при увеличении тепловой нагруженности рабочего цикла из-за подвода к рабочему телу большего количества теплоты.

Необходимая для этого подача в цилиндр большего количества топлива (возрастание цикловой подачи qп) требует для его полного сжигания и большего количества окислителя. На практике это реализуется путем увеличения количества свежего заряда, нагнетаемого в цилиндр двигателя под давлением.

Этот способ носит название наддува двигателя. При этом ре возрастает практически пропорционально увеличению плотности свежего заряда.

На рисунке изображена схема двигателя с наддувом и механическим приводом компрессора от коленчатого вала.

 Схема наддува двигателя с приводным компрессором

Рис. Схема наддува двигателя с приводным компрессором

Одним из недостатков такой системы наддува является существенное снижение экономичности двигателя, обусловленное необходимостью затрат энергии на привод компрессора.

Схема турбонаддува

Рис. Схема турбонаддува

Наибольшее распространение в практике современного двигателестроения получил газотурбинный наддув, схема которого приведена на рисунке выше.

Здесь для привода центробежного компрессора 1 используется энергия ОГ, срабатываемая в газовой турбине 2, конструктивно объединенной с компрессором в единый агрегат, который называют турбокомпрессором (ТК).

Поскольку при газотурбинном наддуве отсутствует механическая связь агрегата наддува с коленчатым валом двигателя, применение ТК заметно ухудшает тяговые характеристики и приемистость двигателя. Это связано с инерционностью системы роторов ТК, а также с уменьшением энергии отработавших газов при малых нагрузках, в связи с чем, особенно в начале разгона, не обеспечивается подача в цилиндр нужного количества свежего заряда. Для преодоления этих недостатков нередко возникает необходимость использования комбинированного наддува. Система комбинированного наддува выполняется в различных конструктивных вариантах и обычно представляет собой определенные комбинации наддува с приводным компрессором и газотурбинного наддува.

Для повышения плотности свежего заряда, подаваемого в цилиндры двигателя, в ряде случаев используются колебательные явления в системах газообмена (пульсации РТ в системе впуска и выпуска), являющиеся результатом цикличности следования процессов газообмена в цилиндре.

Если, например, задать впускному патрубку такие конструктивные параметры (в основном длину и площадь проходного сечения), чтобы перед закрытием впускного клапана около него была волна сжатия, то масса поступающего в цилиндр заряда увеличивается.

Аналогичный эффект можно получить, «настроив» выпускной трубопровод так, чтобы при открытом выпускном клапане вблизи него была волна разрежения. В результате этого улучшится очистка цилиндров и в него поступит большее количество свежего заряда.

При правильном выборе геометрических параметров систем газообмена в отдельных случаях с помощью динамического наддува становится возможным увеличить эффективную мощность двигателя на 15…25%.

При использовании наддува увеличивается механическая и тепловая напряженность элементов, формирующих камеру сгорания, что является одним из основных факторов, ограничивающих возможное увеличение плотности свежего заряда, поступающего в цилиндр. Поэтому при конструировании двигателей с наддувом и выборе величины давления на выходе из компрессора р’х необходимо учитывать возможные последствия роста механических и тепловых нагрузок на его элементы.

По величине создаваемого на входе в цилиндр дизеля давления рк (или степени повышения давления Пк=pк/p0) различают наддув низкий Пк < 1,5, средний Пк > 1,5…2,0 и высокий Пк > 2,0. При этом эффективная мощность двигателя увеличивается соответственно на 20…30, 40…50 и более 50%.

Применение наддува в двигателях с искровым зажиганием требует принятия специальных мер по предотвращению нарушения процесса сгорания, называемого детонацией. Это обстоятельство, а также более высокая тепловая напряженность лопаток турбины из-за большей температуры ОГ существенно усложняют практические возможности использования наддува в двигателях данного типа.




Отправить ответ

avatar
  Подписаться  
Уведомление о