Содержание

устройство и принцип работы, напряжение и мощность

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

фото 1фото 1Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

фото 2фото 2Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

фото 3фото 3Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

фото 4фото 4Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

фото 5фото 5Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

фото 6фото 6Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

фото 7фото 7
Характеристика генератора

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

фото 8фото 8Схема подключения генератора

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Подпишитесь на рассылку!

Принцип работы синхронного генератора

Синхронный генератор. Устройство генератора и принцип действия

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию.

К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах).

Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции.

Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС).

ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора.

Результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии.

Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов.

В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Принцип действия синхронного трёхфазного генератора

Универсальный синхронный трёхфазный генератор представлен в виде специфического механизма переменного тока, который призван преобразовывать определённый тип энергии в электричество.

Именно этот агрегат отвечает за работоспособность солнечных батарей, электростатических машин, а также гальванических элементов.

На практике использование этих устройств определяется исключительно техническими характеристиками.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

из чего состоит, типы, схема и назначение

Содержание статьи:

Генератор постоянного тока – это электротехническое оборудование, которое продуцирует напряжение постоянной величины. Устройство имеет довольно сложное техническое строение, которое можно назвать совершенством технической мысли.

Принцип действия

Генератор постоянного тока

Каждый проводник оснащен магнитом, к концам которого подключена нагрузка. При ее подключении по ним непрерывно протекает переменный ток. Природа его происхождения объясняется тем, что во время работы полюса магнита непрерывно меняются местами. На этом принципе основывается работа генератора переменного тока.

Чтобы ток не изменял своего направления, требуется успевать соединять точки коммутации нагрузки со скоростью аналогичной скорости вращения магнита. Справиться с поставленной задачей может только контроллер – небольшое электротехническое устройство, которое состоит из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно фиксируется на якоре устройства и вращается с ним синхронно.

Электрическая энергия с якоря удаляется с помощью щеток. Используются чаще всего кусочки графита, обладающие высокой электропроводностью и низким коэффициентом трения.

Все эти процессы способствуют образованию на выходе электротехнической установки пульсирующего напряжения одной величины. Для сглаживания этой пульсации применяется несколько якорных обмоток. Чем их больше установлено, тем меньше будут броски напряжения на выходе.

Характеристики и строение

Как и абсолютное большинство других электрических агрегатов, генератор постоянного тока в свой состав включает статор и якорь.

Якорь изготавливают из стальных пластин с небольшими углублениями, в них помещаются обмотки. Их концы обязательно коммутируют с коллектором, который изготовлен из медных пластин, разделенных диэлектриками. По окончании сборки вал, якорь с обмотками и коллектор становятся одним целым.

Статор выполняет не только свою непосредственную функцию, но и является корпусом, к внутренней поверхности которого крепятся электрические магниты и постоянные. Предпочтительнее первый вариант, их сердечники могут быть набраны из металлических пластин или отлиты вместе с корпусом. Еще на корпусе предусмотрены специальные отверстия для крепления токосъемных щеток.

Количество графитов будет изменяться в зависимости от количества полюсов магнитов, которыми оснащен статор. Количество щеток равно количеству пар полюсов.

Электродвижущая сила

Электродвижущая сила генератора постоянного тока или ЭДС представляет собой величину, которая прямо пропорциональна потоку магнитов, количеству активных проводников и частоте вращения якоря. При уменьшении или увеличении этих показателей удается управлять величиной электродвижущей силы и напряжением. Установить требуемые параметры можно с помощью регулировки частоты вращения якоря.

Мощность оборудования и КПД

Мощность генератора постоянного тока встречается как полная, так и полезная. При постоянной электродвижущей силе генератора полная мощность пропорциональна силе тока.

Еще одной важной технической характеристикой альтернатора является его коэффициент полезного действия. Это понятие представляет собой отношение полезной мощности к полной.

На холостом ходе КПД равно нулю, максимальные показатели достигаются при номинальных нагрузках. В мощных инновационных моделях генераторов постоянного тока коэффициент полезного действия приближается к 90%.

Разновидности по способу возбуждения

По способу возбуждения генераторы постоянного тока делятся на два вида:

  • с самовозбуждением;
  • с независимым возбуждением обмоток.

Для самовозбуждения оборудования обязательно требуется электричество, которое им же и вырабатывается. По принципу коммутации обмоток самовозбуждающиеся якоря альтернаторов делятся на следующие разновидности:

  • оборудование с параллельным возбуждением;
  • устройства с последовательным возбуждением;
  • генераторы смешанного типа, которые получили название – компудные.

Каждая разновидность имеет свои конструктивные особенности, преимущества и недостатки.

Для обеспечения оптимальных условий для работы оборудования требуется наличие стабильного напряжения на зажимах. Особенность устройства заключается в параллельном возбуждении выводов катушки, которые подсоединены через регулировочный реостат, расположенный параллельно обмотке якоря.

Для оборудования с независимым возбуждением источником питания выступают внешние устройства или аккумуляторные батареи. В маломощных модификациях устанавливаются постоянные магниты, обеспечивающие создание основного магнитного потока. Основное достоинство заключается в том, что на напряжение на зажимах не влияет возбуждающий ток.

Устройства со смешанным возбуждением сочетают положительные качества вышеописанных разновидностей. Конструктивные особенности – две катушки индуктивности, основная и вспомогательная. Цепь параллельной обмотки включает в себя реостат, который используется для регуляции силы тока возбуждения.

Область применения

Система постоянного тока в самолете

Генераторы постоянного тока имеют довольно обширный список применения. Его активно используют практически во всех отраслях промышленности, особенно в автомобилестроении и при сооружении российских локомотивов нового поколения, которые оснащают асинхронные двигатели, характеризующиеся работой на переменном токе.

Также электротехническое оборудование может использовать в быту для портативных сварочных аппаратов с автономной системой питания и для бытовой техники, оснащенной мощными пусковыми двигателями.

Перед покупкой следует проанализировать, с какими целями электротехническое оборудование должно будет справляться. Исходя из этого подбирается наиболее подходящая модификация генераторов постоянного тока.

Приобрести оборудование можно в специализированных магазинах или на интернет-площадках. При покупке важно проверить наличие всей необходимой сопроводительной документации и гарантийного талона. Предварительно также осматривается целостность корпуса и наличие повреждений: если таковые имеются, лучше воздержаться от покупки. При покупке через интернет стоит внимательно ознакомиться с отзывами о магазине на различных форумах.

принцип действия, схема подключения, устройство + инструкция с фото и видео

Современный окружающий нас мир трудно представить без электрической энергии. Одними из устройств, для производства с детства привычного нам электричества, и являются генераторы разных типов. Рассмотрим устройство генератора постоянного тока.

Любой генератор является механизмом, для преобразования любого вида механической энергии в электрическую. Любое механическое усилие, будь то рычаг, электрический или бензиновый двигатель, служит источником энергии. А подведение этого источника к генератору приводит к выработке им электрического тока.

Основное отличие от генераторов переменного тока заключается в необходимости присутствия аккумулятора или ИБП. Это значительно сужает их применение в промышленности и бытовой сфере.

В последнее время, в связи с повсеместным развитием электротранспорта их используют в качестве источника питания для электромобилей, погрузчиков, троллейбусов и прочего автотранспорта.

К достоинствам можно отнести малые габариты и вес, отсутствие потерь мощности на вихревых токах и малую зависимость от климатических условий. Чтобы понять, что представляет из себя  это устройство, достаточно взглянуть на фото генератора постоянного тока.

Краткое содержимое статьи:

Конструкция генератора

Рассмотрим, что представляет собой генератор постоянного тока. Во-первых, это изготовленный из прочной стали или чугуна корпус устройства. По корпусу также проходит магнитное поле, создаваемое полюсами генератора. Во-вторых, это ротор и статор.


На ферромагнитный статор закрепляется катушка возбуждения. Направление магнитного потока определяют сердечники статора, оснащённые полюсами.

Для большого КПД самого генератора, ротор собран из металлических пластин. Кроме того такая конструкция ротора позволяет значительно сократить появление вихревых токов.

На металлические пластины сердечника наматывают медную или обмедненную обмотку – обмотку самовозбуждения. Количество щеток генератора, изготавливаемых из графита, зависит от количества полюсов на нем, как минимум две. Конструкцию генератора мы можем наглядно рассмотреть на рисунке.

Вывод контура генератора соединяются с помощью коллекторных пластин. Пластины делаются из доступного и хорошего проводника электрического тока – меди, а разделяются между собой диэлектриком.

Принцип действия

Принцип действия генератора постоянного тока, как и любого другого устройства похожего типа основан на знакомого нам со школы явления электромагнитной индукции и появление в устройстве электродвижущей силы – ЭДС. Вспомним школьную физику: если к проводнику с вращающимся внутри него постоянным магнитом присоединить какую-либо нагрузку, то в ней появится переменный ток. Такое возможно из-за того, что поменялись местами магнитные полюса самого магнита.

Чтобы получить ток постоянный необходимо присоединять точки подключения нагрузки синхронно со скоростью вращения магнита. Для этого и предназначен в генераторе коллектор, закреплённый на роторе и крутящийся с той же частотой.


Снимается полученная в результате всего этого процесса энергия с помощью графитных щёток, обладающих хорошей проводимостью и достаточно низким трением. Когда происходит переключения пластин коллектора ЭДС равна нулю, но полярность ее не меняется, за счёт переподключения на другой проводник.

Классификация

Разделение генераторов по классам происходит по тому принципу, как они возбуждаются. Есть два основных типа классификации генераторов, это самовозбуждающиеся и генераторы с независимым возбуждением.

Первый класс это устройства, где обмотка питается непосредственно от якоря. Его можно подразделить на последовательно, параллельное и смешанное возбуждение. Второй класс подразделяется на электромагнитное и магнитоэлектрическое возбуждение.

Способы возбуждения

За счёт использования в устройствах малой мощности постоянных магнитов получается магнитное возбуждение. Соответственно при использовании электромагнитов имеем электромагнитное. Данный способ нашёл широкое применение при производстве генераторов такого типа.

Ещё способы возбуждения генераторов постоянного тока зависят от назначения нужного нам генератора и от того, каким способом подключим обмотку. Если подключить обмотку через специальный реостат к внешнему истоку тока, тогда имеем независимое возбуждение. Такие генераторы находят широкое применение в электрохимическом производстве.

При подключении обмотки через все тот же реостат к клемам самого генератора, получим параллельное возбуждение. Большим плюсом генераторов с таким типом возбуждения является его защита от короткого замыкания, обусловленного все тем же способом возбуждения.


Если обмотку подключить последовательно к якорю, то получится последовательное возбуждение. При таком способе подключения наблюдается сильная зависимость изменения напряжения от величины подключённой нагрузки.

При наличии в генераторе двух обмоток имеет место смешенное подключение, одну обмотку подключают последовательно, другую параллельно.

Подключение проводят таким образом, чтобы создавались магнитные потоки в одном векторе. Число витков при таком подключение в обмотках рассчитывается так, чтобы падение напряжение на одной обмотке компенсировалось другой.

Технические характеристики

Под основными техническими характеристиками генераторов можно понимать следующие величины. Это ЭДС генератора. Непосредственно с ЭДС любого генератора напрямую связана его полная электрическая мощность, которая ей прямопропорциональна.

Полная мощность возрастает при увеличении количества полюсов и частоты оборотов якоря. Полезная же мощность, передаваемая на подключённое внешнее устройство, равна произведению выходного тока на выходное напряжение.

Основная характеристика любого производящего что-либо устройства, в том числе и нашего генератора это КПД. Если генератор выключить, а потом включить, то его КПД будет уменьшаться, в связи с увеличением затрат энергии на нагрев обмотки. Различают электрический КПД и промышленный.


Если генератор работает на холостом ходу или загружен не полностью, то и КПД соответственно значительно уменьшается. Для того чтобы получить комфортный в экономическом плане режим работы генератора в сети, где нагрузка постоянно изменяется, подключают несколько генераторов, соединённых между собой параллельно.

При таком подключении, причём желательно через автомат и вольтметр, добиваются равномерного распределения нагрузки между работающими генераторами. При увеличении потребления внешней нагрузки, в работу включается второй генератор, тем самым регулируя обороты первого и выравнивая напряжение.

При использовании генераторов со смешанным возбуждением происходит автоматическая регулировка характеристик работающих вместе генераторов, повышается стабильность работы.  Это возможно из-за того, что в таких генераторах есть уравнительный провод, проходящий между отрицательными или положительными щётками. Именно эта шина и делает работу таких генераторов устойчивой.

Фото генераторов постоянного тока


Схема, особенности, принцип действия и устройство генератора постоянного тока

Эпоха электрификации началась не так давно и за пару веков полностью изменила наш образ жизни. Посмотрите вокруг, везде, куда падает только глаз, вы непременно увидите какой-то электроприбор. Люди настолько привыкли к разным машинам, которые делают за них почти всю работу, что возникает иллюзия, будто так было всегда. Но давайте заглянем за пелену, скрывающую от нас процесс жизнедеятельности электрических друзей.Разберем принцип работы и устройство генератора постоянного тока.

Немного истории

Электричество наблюдали еще древние греки. Было отмечено свойство янтаря притягивать к себе различные частицы. Люди считали это присущим смоле магнетизмом. Но позже они заметили способность других материалов приобретать магнетизм. Например, стекло при трении тоже стало притягивать мелкие легкие элементы: частицы бумаги, волоски и пыль.Так выяснилось, что магнитный эффект происходит по какому-то закону.

Впоследствии, в XVIII веке, был создан прототип современного конденсатора, названного именем изобретателя «Лейденский банк». Этот простой механизм был способен накапливать заряд, который в то время считался жидкостью, насыщающей твердыми телами и способной переходить от одного тела к другому с поразительной скоростью — несколько миль за доли секунды.

Когда были обнаружены атом и составляющее его ядро ​​и электрон, все встало на свои места.Люди поняли, что именно электроны являются зарядами, которые создают такие необъяснимые явления, как электрические разряды. Но пока это были только статические заряды. С экспериментами Фарадея и Эрстеда начинается электричество, которое мы знаем сейчас. Они изобрели схему генератора постоянного тока, устройство и принцип работы которой основаны на явлении электродвижущей силы ЭДС.

Сила движения электричества

Когда вода в реке приводит в движение притяжение, заряженные частицы в проводнике заставляют ЭДС двигаться.Эта сила тесно связана с магнитным явлением, а именно возникает, как только изменяется магнитный поток, создаваемый магнитом. ЭМФ способна работать только в веществе, где всегда есть заряды. Этим свойством обладают растворы металлов и солей.

ЭДС чем больше, тем быстрее изменяется интенсивность магнитных волн. Как известно, у магнита всегда два полюса. В соответствии с направлением изменения потока по отношению к проводнику ток в проводнике течет в том или ином направлении.Сами положительные и отрицательные заряды создают между нами энергетическое поле, которое мы называем напряжением, чем больше, тем сильнее общий электрический заряд одноименного полюса.

Что такое электрогенератор?

Конструкция или машина, способная преобразовывать любую механическую силу в электрическую энергию, называлась генератором электричества. Принцип работы и устройство генератора постоянного тока связаны с магнетизмом. Если взять постоянный магнит и пересечь поле его напряженности с проводником, то в последнем есть сила, заставляющая заряженные частицы двигаться в одном направлении — появляется ток.То же самое произойдет с неподвижным проводником и подвижным магнитом.

Экспериментальным путем ученые установили, что величина тока тем больше, чем больше:

  • Величина магнитного потока между полюсами магнита.
  • Скорость пересечения линий натяжения.
  • Длина токоведущего провода.

Если перемещать проводник параллельно ему по мере движения потока, индукции в нем не будет. Это привело к закону правой руки, который помогает понять, в каком направлении движется ток.Когда кисть правой стороны тела помещается ладонью руки так, чтобы в нее входили магнитные линии напряженного поля, а большой палец согнут и указывал туда, где движется проводник, оставшиеся четыре пальца показывают текущий путь. В магните вектор движения поля направлен с севера на юг.

Схема работы элементарного генератора

Принцип действия и устройство генератора постоянного тока простого типа: корпус выполнен из токопроводящего материала, установлен на оси и производит вращение между полюсами магнит.Каждый свободный конец рамы соединен своим контактом, который имеет вид дугообразной пластины. Вместе контакты образуют круг, разорванный на две точки (коллектор). Эти полукруглые контакты подвижно соединены с подпружиненными токопроводящими щетками. Они снимают ток.

В пространстве рамка относительно контактов ориентирована так, что когда одна половина участков наибольшего магнитного потока пересекает друг друга, щетки замыкаются на контактах. Когда элементы каркаса проходят фазу движения по линиям — контакты щетки открыты к коллектору.

Если подключить осциллограф, то можно увидеть, что устройство осциллятора постоянного тока и принцип работы таковы, что он производит чередование полуволн, находящихся по одну сторону от координат и изменяющих их значение от нуля до максимального и снова в ноль. Их частота повторения зависит от скорости вращения кадра. Это означает, что ток в такой системе движется в одном направлении (постоянном), но имеет пульсирующий вид.

Принцип работы и устройство генератора постоянного тока

Настоящий генератор постоянного тока устроен более сложно, хотя принцип его работы не отличается от рассмотренного выше.Вместо единой рамки и пары полукруглых контактов он имеет множество рамок и коллекторных контактов. Это, во-первых, увеличивает мощность такой машины, а во-вторых, сглаживает пульсации тока, так как каждый кадр создает свою полуволну, которые при настройке друг на друга образуют суммарный ток. Такая вращающаяся система называется якорем или ротором.

Магнит генератора тоже модифицирован. В его роли выступает электромагнит, состоящий из обмотки и сердечника.Используя электромагниты, можно создать большой магнитный поток, который не под силу обычному постоянному. Кроме того, расход можно легко изменить. Стационарная часть генератора называется статором.

В зависимости от режима работы машины при вращении вала между статором и ротором наблюдаются следующие процессы:

  1. К генератору не подключена нагрузка. В случае такой холостой работы якорь вращается, в нем наводится ЭДС, но в обмотке нет тока, так как цепь не замкнута.
  2. Генератор постоянного тока, схема устройства которого включен в цепь, работает в нагрузочном режиме. В этом случае в якоре протекает ток и появляется новая составляющая — магнитный поток, создаваемый якорем (отклик якоря). Этот поток движется в таком направлении, что противодействует основным силовым линиям, создаваемым электромагнитом. В результате реальная ЭДС будет ниже, то есть снизится мощность генератора. И чем больше нагрузка на генератор, тем больше энергии уходит на преодоление реакции якоря при вращении вала.

Для выравнивания магнитного потока якоря в цепь ротора вводятся так называемые компенсационные обмотки, в которых формируется магнитный поток, ослабляющий отклик якоря.

Типы генераторов, вырабатывающих постоянную электроэнергию

Принцип работы и устройство генераторов постоянного тока различаются исполнением цепи возбуждения. Это:

  • Магнитоэлектрический. Они используют постоянные магниты для создания магнитного потока.Такие машины, как правило, малой мощности, обладают высоким КПД, поскольку отсутствуют потери в обмотках возбуждения. Отсутствие устройств в сложности регулирования.
  • Генераторы с независимым возбуждением ci
.Принцип работы

и объяснение генераторов переменного и постоянного тока

Генератор

— это машина, преобразующая механическую энергию в электрическую. Он работает по принципу закона Фарадея электромагнитной индукции. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей. Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем.Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле

Работа генераторов:

Генераторы в основном представляют собой катушки электрических проводников, обычно медных проводов, которые плотно намотаны на металл. сердечника и установлены для поворота внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать в нем поток электрического тока.


Working of Generators Working of Generators Источник изображения — лучшие альтернативные источники

Катушка проводника и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по сравнению с магнитное поле.

Generators Generators Источник изображения — tpub

Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле. Когда якорь вращается, он начинает повышать напряжение.Часть этого напряжения подается на обмотки возбуждения через регулятор генератора. Это приложенное напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля. Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.

Типы генераторов:

Генераторы подразделяются на типы.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока:

Они также называются генераторами переменного тока. Это наиболее важный способ производства электроэнергии во многих местах, поскольку сейчас все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный и синхронный.Индукционный генератор не требует отдельного возбуждения постоянного тока, регуляторов, частотного регулятора или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, возбуждая ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока, даже если нагрузка недоступна.

PCBWay PCBWay

Синхронные генераторы — это генераторы большого размера, которые в основном используются на электростанциях. Это может быть тип вращающегося поля или тип вращающегося якоря. У вращающегося якоря якорь находится у ротора, а поле у ​​статора.Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью. Генераторы переменного тока с вращающимся полем широко используются из-за высокой мощности выработки и отсутствия контактных колец и щеток.

Это могут быть трехфазные или двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения. Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение совершенно независимо от другого.Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что напряжение, индуцированное в одной фазе, смещается на 120º относительно двух других. Они могут быть соединены треугольником или звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Дельта-соединение выглядит как греческая буква «Дельта» (Δ). При соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений. Соединение Wye обозначается буквой Y.

Эти генераторы комплектуются двигателем или турбиной для использования в качестве мотор-генераторной установки и используются в таких приложениях, как военно-морской флот, добыча нефти и газа, горнодобывающая техника, ветряные электростанции и т. Д.

Преимущества генератора переменного тока:
  • Эти Генераторы, как правило, не требуют обслуживания из-за отсутствия щеток.
  • Легко повышать и понижать через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции повышения
  • Размер генератора относительно меньше, чем у машины постоянного тока
  • Потери относительно меньше, чем у машины постоянного тока
  • Эти выключатели генератора относительно меньше, чем выключатели постоянного тока

Генераторы постоянного тока:

Генератор постоянного тока обычно используется в автономных приложениях.Эти генераторы обеспечивают бесперебойную подачу питания непосредственно в устройства хранения электроэнергии и электрические сети постоянного тока без использования нового оборудования. Накопленная мощность передается нагрузке через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как аккумуляторы, как правило, стимулируют восстановление значительно большего количества топлива.

Классификация генераторов постоянного тока

Генераторы постоянного тока классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.

  • Генераторы постоянного тока с постоянным магнитом
  • Генераторы постоянного тока с раздельным возбуждением и
  • Генераторы постоянного тока с самовозбуждением.

Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания потока. Они используются для приложений с низким энергопотреблением, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность. Они используются для гальваники и электроочистки. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле, они запускаются.Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Эти самовозбуждающиеся генераторы постоянного тока снова подразделяются на шунтовые, последовательные и составные генераторы.

Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычные осветительные приборы и т. Д.

Преимущества генератора постоянного тока:
  • В основном машины постоянного тока имеют широкий спектр рабочих характеристик, которые могут быть получены путем выбора метода возбуждения обмотки возбуждения.
  • Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшим колебаниям, что желательно для некоторых приложений в установившемся режиме.
  • Нет необходимости в защите от излучения, поэтому стоимость кабеля будет меньше по сравнению с кабелем переменного тока.

Теперь у вас есть четкое представление о работе и типах генераторов. Если у вас возникнут дополнительные вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.

.

Строительство генератора постоянного тока — объяснение его различных частей

A Генератор постоянного тока — это электрическое устройство, преобразующее механическую энергию в электрическую. Он в основном состоит из трех основных частей: системы магнитного поля, якоря, коллектора и щеточного механизма. Другими частями генератора постоянного тока являются магнитная рама и ярмо, полюсный сердечник и полюсные наконечники, катушки возбуждения или возбуждения, сердечник и обмотки якоря, щетки, концевые корпуса, подшипники и валы.

Схема основных частей 4-полюсного генератора постоянного тока или машины постоянного тока показана ниже:

construction-of-dc-generator-fig-1

В комплекте:

Система магнитного поля генератора постоянного тока

Система магнитного поля — это стационарная или неподвижная часть машины.Он производит основной магнитный поток. Система магнитного поля состоит из мэйнфрейма или ярма, полюсного сердечника и полюсных башмаков и катушек возбуждения или возбуждения. Эти различные части генератора постоянного тока подробно описаны ниже.

Магнитная рама и ярмо

Наружная полая цилиндрическая рама, к которой крепятся основные опоры и межполюсные опоры и с помощью которой машина крепится к фундаменту, известна как Хомут. Он изготавливается из стального литья или стального проката для больших машин, а для машин меньшего размера ярмо обычно изготавливается из чугуна.

Два основных назначения ярма следующие: —

  • Он поддерживает полюсные жилы и обеспечивает механическую защиту внутренних частей машин.
  • Он обеспечивает путь для магнитного потока с низким сопротивлением.

Стержень и башмаки

Полюсный сердечник и полюсные башмаки крепятся к магнитной раме или ярму болтами. Поскольку полюса выступают внутрь, их называют выступающими полюсами. Каждый полюсный сердечник имеет изогнутую поверхность. Обычно сердечник полюса и башмаки изготавливаются из тонких листов литой стали или кованого железа, которые скрепляются друг с другом под действием гидравлического давления.Полюса ламинированы, чтобы уменьшить потери на вихревые токи.

Рисунок, показывающий полюсный сердечник и полюсный башмак, представлен ниже:

construction-of-dc-generator-fig-2

Сердечник опор служит для следующих целей:

  • Он поддерживает катушки возбуждения или возбуждения.
  • Они более равномерно распределяют магнитный поток по периферии якоря.
  • Увеличивает площадь поперечного сечения магнитопровода, в результате сопротивление магнитного пути уменьшается.

Катушки возбуждения или возбуждения

Каждый полюсный сердечник имеет одну или несколько катушек возбуждения (обмоток), размещенных над ним для создания магнитного поля. Эмалированный медный провод используется для создания катушек возбуждения или возбуждения. Катушки наматываются на каркас и затем размещаются вокруг полюсного сердечника.

construction-of-dc-generator-fig-3

Когда постоянный ток проходит через обмотку возбуждения, он намагничивает полюса, что в свою очередь создает магнитный поток. Катушки возбуждения всех полюсов соединены последовательно таким образом, что при протекании через них тока соседние полюса приобретают противоположную полярность.

Якорь генератора постоянного тока

Вращающаяся часть машины постоянного тока или генератора постоянного тока называется якорем. Якорь состоит из вала, на котором размещен многослойный цилиндр, называемый сердечником Amature.

Сердечник якоря

Сердечник якоря генератора постоянного тока имеет цилиндрическую форму и прикреплен к вращающемуся валу. На внешней периферии якоря имеются канавки или прорези, в которые помещается обмотка якоря, как показано на рисунке ниже:

construction-of-dc-generator-fig-6

.Принцип работы и конструкция генератора постоянного тока

Простейший генератор представляет собой петлю из провода, вращающегося в магнитном поле между полюсами N и S, , как показано на рис. 4.1. Изменяющаяся во времени переменная ЭДС, индуцированная в контуре, заставляет переменный ток течь через контактные кольца и щетки во внешнюю цепь нагрузки. Такая машина представляет собой генератор переменного тока.

Преобразование переменного тока в постоянный выполняется с помощью коммутатора с разъемным кольцом.Коммутатор, показанный на рис. 8.1 a

имеет два медных сегмента 4 , подключенных к концам 1 контура. Сегменты коммутатора закреплены на валу якоря и изолированы друг от друга и от вала. Стационарные щетки 2 и 3 , подключенные к внешней цепи, опираются на коммутатор и скользят по его поверхности.

Когда вал, несущий проволочную петлю и сегменты, начинает вращаться, щетки 2 и 3 попеременно контактируют с каждым сегментом. Щетки зафиксированы в таком положении, что они охватывают промежутки между сегментами в момент, когда ЭДС, индуцированная в контуре, равна нулю. В этом случае, когда якорь вращается, переменная ЭДС, наводимая в контуре, изменяется синусоидально, если поле однородно, но каждая из щеток контактирует с этим сегментом и, таким образом, с тем концом проводника, который в данный момент имеет под полюсом определенной полярности.

Следовательно, ЭДС на щетках 2 и 3 не меняет знак, и ток течет в одном направлении от щетки 2, через внешнее сопротивление R, и к щетке 3. Но поскольку ЭДС во внешней цепи не является постоянной, а изменяется со временем пульсирующим образом, эта волна пульсирующей ЭДС создаст пульсирующий ток.

Если намотать якорь двумя витками провода, расположенными под углом 90 относительно друг друга, и соединить концы витков с четырьмя сегментами коммутатора, пульсации ЭДС и тока во внешней цепи станут намного меньше .При использовании большого количества витков провода вокруг якоря и множества сегментов коммутатора развивается ЭДС, и ток будет плавным и практически постоянным.

Рисунок 8.1b иллюстрирует разрез генератора постоянного тока. Стационарный элемент, статор, служит для создания магнитного поля, а вращающийся элемент, ротор, является якорем, предназначенным для создания ЭДС.

Статор, изображенный на рис. 8.2a, состоит из рамы 3, или ярма, полюсов главного поля 1, и коммутирующих (промежуточных) полюсов поля 2. Главный полюс, показанный на рис. 8.2b, представляет собой электромагнит, создающий магнитный поток. Он состоит из сердечника 4, катушки возбуждения 6, и полюсного наконечника 7.

Основная опора крепится к раме 3 болтом 5. Сердечник опоры отлит из стали и имеет в поперечном сечении овальную форму. Катушка возбуждения состоит из множества витков изолированного медного провода, намотанного на сердечник. Катушки всех полюсов соединены последовательно, образуя обмотку возбуждения.Ток, протекающий через обмотку, создает магнитный поток. Полюсный башмак закрепляет катушку возбуждения на сердечнике и обеспечивает равномерное распределение магнитного потока под полюсом . Ей придается такая форма, что воздушный зазор между полюсом и якорем одинаков по всей длине полюсной дуги. Коммутирующие полюса или межполюсники также несут катушки на своих сердечниках. Между главными полюсами закрепляются межполюсники; их количество может быть равным или равным половине числа основных полюсов.Они установлены на

мощных станков для устранения искрения на щетках. Машины малой мощности обычно не имеют межполюсников.

Рама отлита из стали и служит механическим каркасом * станка. Он поддерживает основные и коммутационные полюса, закрепленные с внутренней стороны, а также несет на своих торцах концевые рамы или концевые рамы с подшипниками, в которых вращается вал машины.Рама изготовлена ​​на литых ножках для установки станка на опоры.

Якорь, показанный на рис. 8.3а, состоит из сердечника 1 , обмотки 2, и коммутатора 3. Сердечник якоря представляет собой цилиндр, изготовленный из листов электротехнической листовой стали, изолированных друг от друга с помощью затвора или бумаги. для снижения вихретоковых потерь. Стальные листы перфорированы по шаблону и снабжены прорезями для проводов обмотки якоря. Вентиляционные каналы сделаны в сердечнике якоря для охлаждения якоря.Обмотка тщательно изолирована от сердечника и закреплена в пазах немагнитными клиньями. Концевые соединения крепятся к опорным кольцам с помощью ленточной проволоки. Все катушки обмотки, установленные на якорь, соединены последовательно, образуя замкнутую цепь, и припаяны к сегментам коммутатора.

Коммутатор представляет собой цилиндр, состоящий из стержней коммутатора, которые представляют собой клиновидные (ласточкин хвост) отрезки жестко вытянутой меди, изолированные друг от друга и от рукава коммутатора тонкими полосками миканита.Каждая штанга коллектора удерживается на месте путем зажима ее части в форме ласточкина хвоста между V-образными выступами на втулке и кольцом, последнее крепится к втулке болтами с головкой под ключ.

Коммутатор — самая сложная деталь с точки зрения конструкции. Кроме того, в некоторых отношениях это самая важная часть машины постоянного тока. Поверхность коллектора должна быть строго цилиндрической, чтобы избежать раскачивания и искрения на щетках.

Щетки, собирающие ток и передающие его во внешнюю цепь, могут быть изготовлены из графита, угольно-графитового и бронзово-графитового типов.В высоковольтных машинах используются графитовые щетки с высоким контактным сопротивлением; низковольтные машины работают с бронзово-графитовыми щетками. На рис. 8.3b показан щеткодержатель. Щетка 4 , вставленная в коробку для щеток, прижимается к поверхности коллектора пружинами 5. Каждый щеткодержатель может содержать несколько щеток, соединенных параллельно.

Щеткодержатели имеют отверстия для крепления на шпильках щеткодержателей, которые, в свою очередь, прикреплены к коромыслу щетки и изолированы от него токопроводящими шайбами ​​и втулками.Количество щеткодержателей обычно равно количеству полюсов. Коромысло устанавливается на торцевом щите малой и средней машины или устанавливается на раму большой машины. Коромысло качения можно поворачивать для изменения положения щеток относительно полюсов. Обычно его удерживают в таком положении, чтобы щетки были выровнены с осями полюсов основного поля.

:

.



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *