Тормозная система грузового транспортного средства

Грузовые автопарки в России интенсивно увеличиваются год от года. Обусловлено данное явление тем, что покупательская способность растет, не смотря на кризис. Кроме того, растет и срок эксплуатации автомобилей, а также производится постоянный ввоз подержанных и новых транспортных средств из-за рубежа. Все это прямым образом влияет на увеличение продаж запасных частей, в частности, таких изделий, как тормозные диски для грузовиков. Помимо этого, возрастает необходимость в СТО.

Повышение эффективности работы тормозных систем в последние годы стало одной из приоритетных задач крупнейших мировых автопроизводителей. Прежде всего, это связано с тем, что машин на трассах страны становится все больше. В целях обеспечения безопасности дорожного движения, крупные автоконцерны уделяют совершенствованию тормозных систем своих грузовых автомобилей самое пристальное внимание.

Таким образом, становится ясно, что эффективность эксплуатации грузового транспортного средства увеличивается за счет того, что на современных авто установлены надежные и безотказные тормоза. Поэтому необходимо покупать только качественные

дисковые тормоза грузовиков от проверенных производителей.

Назначение тормозной системы грузового автомобиля

Система тормозов у грузовика предназначена для плавного снижения скорости или резкой остановки транспорта. Кроме того, тормозная система обеспечивает надежное удержание грузовика на месте во время стоянки.

Современная тормозная система грузового транспортного средства должна обеспечивать полную остановку авто и быстрое снижение как в простых, так и в сложных условиях движения. Тормоза нагруженной машины на стоянке на продольном уклоне в 16 градусов должны удерживать грузовик от самопроизвольного смещения с места. Для этого, все современные грузовые транспортные средства оснащены несколькими тормозными системами: рабочей, вспомогательной и стояночной.

Рабочая тормозная система грузовика – это основной действующий механизм торможения. Она отвечает за снижение скорости движения транспортного средства до, непосредственно, его полной остановки. При этом, такие факторы, как скорость автомобиля, условия окружающей среды, качество и уклон дороги не должны оказывать влияния на ее работу.

Стояночная тормозная система грузовика предназначена для удержания неподвижного транспорта как на уклоне трассы, так и на ровном участке дороги.

Вспомогательная система тормозов используется для поддержания авто на постоянной скорости, когда при его движении на затяжном спуске горной трассы нужно снизить нагрузку на рабочую тормозную систему в условиях длительного процесса торможения.

Тормозная система грузового прицепа нужна, прежде всего, для уменьшения скорости его движения. Однако это не единственное ее назначение. Система тормозов у прицепа требуются так же и для того, чтобы этот транспорт при обрыве сцепления с тягачом мог автоматически затормозить.

Принцип ее действия при отпущенной педали тормоза и работающем двигателе тягача состоит в следующей цепочке: в баллоны под давлением подается воздух компрессором, далее воздух движется к тормозному крану, от него поступает в баллоны через верхнюю секцию.

Когда педаль тормоза нажата, воздух не поступает к прицепу, так как верхняя секция закрыта. В этот момент в пневмокамеры прицепа поступает воздух из емкостей, потому что тормозной кран находится в открытом состоянии. Начинается процесс торможения прицепа.

В системе тормозов тягачей, автобусов, а также грузовиков со средней и большой грузоподъемностью широко применяется пневматический привод. В подобной системе тормозные механизмы работают от энергии сжатого воздуха. Каждый современный производитель автозапчастей оборудует свои грузовые транспортные средства именно такими тормозными системами.

Принцип работы пневматических тормозов грузового транспортного средства

Работа системы тормозов пневматического типа у грузовиков заключается в следующем: запас воздуха под давлением в компрессоре хранится в специальных баллонах. Когда производится нажатие на педаль тормоза, тормозной кран создает необходимое давление в тормозных отсеках, благодаря чему вступает в работу рычаг тормозного механизма. Именно он осуществляет торможение и прекращает данный процесс, если педаль тормоза будет отпущена.

В грузовом транспортном средстве при торможении сжатый воздух идет из баллонов к пневмокамерам когда открывается нижняя секция тормозного крана. Воздух давит на диафрагму, когда поступает в пневмокамеры, а диафрагма давит на толкатель, сжимая пружину. Толкатель, в свою очередь, передаёт усилие на валик разжимного кулака и рычаг.

Далее происходит разведение колодок посредством разжимного кулака. Когда педаль тормоза отпускается, в системе все элементы возвращаются в свое исходное положение. За этот процесс отвечают возвратные пружины. Из пневмокамер воздух выходит через специально предназначенный для этого кран в атмосферу.

Температура кипения является одним из наиболее важных параметров, который определяет максимально допустимую температуру гидравлического привода тормозов. Температура кипения подавляющего большинства тормозных жидкостей в процессе использования снижается. Данный процесс происходит из-за высокой гигроскопичности вещества, то есть по причине попадания воды за счет появления конденсата.

По этой причине принято определять не только температуру кипения «сухой» тормозной жидкости, но также и температуру кипения «увлажненной» жидкости. Как правило, данный параметр обозначает, что в тормозной жидкости содержится примерно 3.5% водной субстанции.

Кстати, по температуре кипения так называемой «увлажненной» жидкости определяют температуру, при которой она начнет «закипать» через несколько лет эксплуатации. Поэтому данный параметр должен быть выше рабочей температуры жидкости в системе тормозов, если владелец грузового транспортного средства хочет, чтобы его тормоза были надежными.

Как правило, в гидравлическом приводе тормозных автомобилей рабочая температура жидкости не выше 100 С. Однако при определенных условиях, например, при резком торможении на горной трассе, данный параметр может подняться до 120 С и даже выше.

Значение и сущность технического обслуживания и ремонта автомобилей

Обеспечение нормальной работоспособности автомобиля во время срока его использования – это одна из важных задач владельца грузовика. И не важно, приобретает ли он автозапчасти оптом или в розницу, главное, постоянно поддерживать техническое состояние своего транспортного средства в норме.

Для этого необходимо регулярно проводить комплекс технических мер, позволяющих поддерживать механизмы, агрегаты и узлы грузовика в работоспособном состоянии во время максимального периода эксплуатации. Данный комплекс мер позволяет обслуживать или ремонтировать грузовые транспортные средства в зависимости от характера проблемы.

В России принято проводить техническое обслуживание и ремонт автомобилей по планово-предупредительной системе. Ее суть заключается в плановом техническом обслуживании и срочном ремонте, когда возникает такая потребность.

Рабочая тормозная система. Грузовые автомобили. Тормоза

Рабочая тормозная система

Тормозные рабочие механизмы размещают в колесах автомобиля, поэтому их называют колесными. Различают механический, гидравлический и пневматический привод тормозных механизмов.

В устройстве гидравлического привода используют свойств а жидкостей (закон Паскаля)

Рис. Схема гидравлического тормозного привода А – расположение, Б – соединение, В – действие тормозов. 1 – главный тормозной цилиндр, 2 – трубопроводы, 3 – тормозные цилиндры колес, 4 – тормозная педаль, 5 – присоединение шлангов, 6 – корпус главного тормозного цилиндра, 7 – гибкие шланги, 8 – бачок для тормозной жидкости, 9 – колодка, 10 – тормозной барабан.

Гидравлический привод состоит из главного тормозного цилиндра 1с резервуаром для тормозной жидкости, соединенного трубопроводами 2 с тормозными цилиндрами 3 колес, шланги, гидровакуумного усилителя.

Вся система заполняется специальной тормозной жидкостью, не разъедающей резиновые детали автомобиля.

Жидкость в гидравлической системе тормозов подается от головного цилиндра 1 к цилиндрам 3 колес по металлическим трубкам 2 и специальным шлангам из прорезиненной ткани 7, выдерживающим высокие давления и действие масел. Такая конструкция позволяет управлять тормозами, несмотря на колебания мостов и колес.

Главный тормозной цилиндр .

Главный тормозной цилиндр соединяется с колесными цилиндрами при помощи системы трубопроводов, состоящей из металлических трубок, тройников, штуцеров и гибких шлангов из прорезиненной ткани. Рис. Главный тормозной цилиндр автомобиля ГАЗ 1 – крышка, 2 – пополнительный бачок, 3 – питающий штуцер, 4 и 17 – корпусы, 5 – защитный колпачок, 6 – толкатель, 7 и 15 – поршни, 8 – упорный болт, 9 – уплотнительное кольцо головки, 10 – манжета, 11, 16 – головки поршня, 12 – упорный стержень, 13 – возвратная пружина, 14 – упор первичного поршня, 18 – упор вторичного поршня, 19 – клапан избыточного давления, А – штуцер выхода жидкости в контур тормозного привода задних колес, Б – штуцер выхода жидкости в контур тормозного привода передних колес, I и II – полости цилиндра.

Главный тормозной цилиндр создает давление в двух независимых гидравлических контурах тормозного привода, поршнем 7 в приводе задних колес, а поршнем 15 в приводе передних колес. Если один из контуров разгерметизируется и перестанет затормаживать связанные с ним колеса, другой будет продолжать работать. При этом у водителя сохранится возможность остановить транспортное средство, правда с меньшей эффективностью.

Поршни размещены в цилиндрах 4 и 17, корпуса которых соединены питающими штуцерами 3 с пополнительным бачком, а выходными штуцерами А и Б – с контурами тормозного привода соответственно задних и передних колес.

Роль перепускного клапана исполняют плавающие головки 11 , установленные на поршнях. В расторможенном положении между головкой и поршнем под действием возвратных пружин устанавливается зазор. Полости I и II цилиндра сообщаются с бачком 2. При нажатии педали тормоза, я поршень тормозного привода задних колес перемещается, а затем при помощи упорного стержня 12 перемещается поршень привода передних колес и нагнетается тормозная жидкость через клапан 19 в рабочие тормозные цилиндры колес. Под действием пружин головки 11 поршней прижимаются к их торцу, рассоединяя полости I и II с бачком и в тормозном приводе создается давление. С помощью клапанов 19 в тормозной системе поддерживается избыточное давление тормозной жидкости 40 – 80 кПа. После прекращения нажатия педали поршень возвращается в исходное положение пружиной 13.

Под капотом автомобиля расположен запасной бачок 2, изготовленный из прозрачного материала, что позволяет контролировать уровень жидкости в нем. Пополнительный бачок служит для питания тормозной системы. Цилиндр и бачок соединены отверстиями, через которые жидкость перетекает из бачка в цилиндр и обратно.

Уровень жидкости должен всегда находится на расстоянии 15 – 20 мм от кромки заливного отверстия.

Бачок имеет три изолированные секции, одна из которых питает систему привода сцепления, а две другие – систему раздельного привода тормозов.

На автомобилях установлен двухконтурный тормозной привод с раздельным торможением передних и задних колес, имеющий в каждом контуре гидровакуумный усилитель и вакуумный баллон с запорным клапаном, которые обеспечивают независимое питание каждого контура. Гидровакуумный усилитель служит для снижения усилия водителя, нажимающего на педаль тормоза, используя вакуум, возникающий во всасывающем трубопроводе двигателя.

Гидровакуумный усилитель состоит из корпуса (силовой камеры), гидравлического цилиндра 9 и клапана управления. В корпусе силовой камеры установлена диафрагма с упорной тарелкой, пружина и толкатель. Толкатель одним концом соединен с тарелкой диафрагмы, а с другой с поршнем цилиндра усилителя, в котором установлен шариковый клапан. Силовая камера разделена подвижной диафрагмой на две части, соединенные между собой хомутиками.

Одна часть связана с атмосферой, а другая с выпускным коллектором двигателя. Гидровакуумный усилитель работает следующим образом, когда педаль тормоза отпущена, воздушный клапан управления закрыт, а вакуумный открыт, и через него обе полости камеры сообщаются между собой.

При нажатии на педаль тормоза 1, водитель принудительно перемещает диафрагму, шариковый клапан поршня 10 усилителя открывается, и жидкость из главного тормозного цилиндра поступает к колесным тормозам, приводя их в действие и создавая дополнительную силу на штоке главного тормозного цилиндра, действующую в том же направлении куда перемещает шток нога водителя. В результате для достижения необходимой эффективности торможения нажимать на педаль тормоза можно с меньшим усилием.

Вакуумный усилитель рабочей тормозной системы действует только при работающем двигателе. Это необходимо учитывать при движении транспортного средства с неработающим двигателем (например, при буксировке неисправного транспортного средства). В последнем случае, чтобы снизить скорость или остановить автомобиль, на педаль тормоза придется нажимать с большим усилием, чем на транспортном средстве с работающим усилителем.

Тормозная система с пневмоприводом . Работа пневматической системы тормозов: в компрессоре создается запас воздуха под давлением, который хранится в воздушных баллонах. При нажатии на педаль тормоза воздействует на тормозной кран, который создает давление в тормозных камерах, которые приводят в действие через рычаг тормозной механизм, который и производит торможение и при отпуске педали прекращается торможение.

Пневмопривод применяют на автомобилях большой грузоподъемности. Он позволяет получать достаточно большие силы в тормозных механизмах при небольших силах, прикладываемых водителем к тормозной педали. Рис. Схема пневматического привода тормозов автомобиля ЗИЛ. 1 – компрессор, 2 – манометр, 3 – воздушные баллоны, 4 – задние тормозные камеры, 5 – соединительная головка, 6 – разобщительный кран, 7 – соединительный шланг, 8 – тормозной кран, 9 – передние тормозные камеры.

В пневматический привод автомобиля входят компрессор 1, нагнетающий сжатый воздух в баллоны(ресиверы)3, тормозные камеры 4 и 9, тормозной кран 8, связанный с тягой тормозной педалью и соединительная головка 5 с разобщительным краном 6, позволяющая соединять тормозную систему прицепа к системе пневматического привода тормозов автомобиля – тягача.

Вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей. Создаваемое компрессором давление автоматически ограничивается регулятором давления. Величину давления контролируют манометром.

При нажатии на педаль тормоза, тормозной кран сообщает тормозные камеры всех колес с ресиверами. Тормозная камера приводит в действие тормозной механизм за счет энергии сжатого воздуха. Поступающий в каждую камеру сжатый воздух, который прогибает диафрагму к корпусу вместе с диском и перемещает шток. Рис. Тормозная камера 1 – крышка корпуса, 2 – штуцер для подвода и отвода воздуха, 3 – диафрагма, 4 – корпус, 5 – шток, 6 – рычаг, 7 – червяк, 8 – фиксатор червяка, 9 – червячная шестерня, 10 – вал разжимного кулака тормозного механизма, 11 – пружины диафрагмы.

Шток повертывает рычаг 6, а вместе с ним и вал 10 разжимного кулака тормозного механизма колеса, прижимающего колодки к тормозному барабану. После отпускания педали тормоза колодки возвращаются в исходное положение, тормозной кран 8 разобщает с ресиверами тормозные камеры и соединяет их с атмосферой. Воздух из камер выходит, пружины 11 возвращают диафрагму в первоначальное положение и торможение прекращается. Вмонтированные в рычаг 6 червяк 7 и червячная шестерня 9 позволяют поворачивать вал 10 относительно рычага и этим регулировать зазор между колодками и барабаном тормозного механизма. Компрессор является источником сжатого воздуха, питающим все агрегаты пневматической системы. На грузовых автомобилях и автобусах применяют одноступенчатые двухцилиндровые компрессоры одностороннего действия . Компрессор нагнетает воздух в воздушные баллоны.

Рис. Схема компрессора. 1 – поршень, 2 – нагнетательный клапан, 3 – трубопровод подачи воздуха в воздушный баллон, 4 – впускной клапан, 5 – воздухопровод от воздушного фильтра, 6 – регулировочный колпак, 7 – шток, 8 – блок шариковых клапанов, 9 – трубопровод от воздушного баллона, 10 – разгрузочный канал, 11 – плунжер разгрузочного устройства, А – блок цилиндров, Б – регулятор давления, В – отверстие.

При ходе поршня вниз, в цилиндре компрессора создается вакуум, открывается впускной клапан и через воздушный фильтр двигателя поступает воздух. При ходе поршня вверх, впускной клапан закрывается, сжатый воздух через открытый нагнетательный клапан 2, поступает через трубопроводы в головку и воздушные баллоны.

Регулятор давления Б поддерживает заданное давление воздуха в пневмосистеме автоматически. Конструкция регулятора включает в себя корпус и блок из восьми шариковых клапанов. При давлении в системе ниже 0,6 МПа шариковые клапаны опущены и нижний шарик закрывает отверстие, сообщающееся с воздушными баллонами. Через наклонные каналы штуцера и отверстие В в разгрузочное устройство попадает воздух из атмосферы.

Шариковые клапана поднимаются, когда давление в системе достигнет 0,75МПа, верхний шарик закроет наклонные канал штуцера, перекрыв доступ воздуха из атмосферы, в разгрузочное устройство начинает поступать воздух из баллонов. Сжатый воздух выключает впускные клапаны компрессора из работы. Верхний клапан открывается при давлении в системе 0,75МПа, а нижний при давлении менее 0, 6 МПа.

Регулировочным колпаком 6 можно регулировать затяжку пружины и устанавливать давление, при котором компрессор будет выключаться.

Воздушные баллоны необходимы для хранения сжатого воздуха. На баллонах имеются кран для слива конденсата, и на правом баллоне кран отбора воздуха. Объема воздушных баллонов хватает до 10 торможений.

Чтобы исключить повышения давления в системе пневматических тормозов, при неисправном регуляторе давления, на воздушном баллоне установлен предохранительный клапан, который открывается если давление в системе превысит 0,95 МПа. Рис. Масловлагоотделитель.

Масловлагоотделитель – устанавливается перед баллонами и предназначен для очистки сжатого воздуха, поступающего из компрессора от масла и влаги. Масло оказывает вредное действие на резиновые детали пневматической системы, а пары воды, конденсируясь в узлах системы при отрицательных температурах замерзают, что приводит к нарушению работы основных элементов пневматической системы автомобиля.

В корпусе 1 установлен обратный клапан 2, прижимаемый к гнезду пружиной 3. Сверху корпус закрыт пробкой 4. Для уплотнения корпуса и стакана 7 установлено резиновое кольцо 8 (уплотнение происходит при затяжке конусного наконечника стяжного стержня 6). Воздух из компрессора поступает в отверстие А, проходит через латунную сетку элемента 5, отделяясь от масла и влаги, поступает в отверстие стержня, и, отжимая обратный клапан, выходит в трубопровод, связанный с баллоном.

Оставшееся на сетке масло и влага стекают в стакан 7. Для выпуска конденсата в нижней части стакана устанавливают сливной краник. Рис. Сливной кран

Сливные краны предназначены для периодического слива конденсата из всех баллонов и масловлагоотделителя. Выпуск конденсата осуществляется наклоном клапана 3 с помощью кольца 5. Пружина 2 прижимает клапан к седлу 4 в нормальном состоянии. С помощью штуцера 1 кран вворачивается в баллон.

Для повышения надежности работы пневматической системы и исключения замерзания конденсата применяют антифризный насос, который устанавливают между масловлагоотделителем и регулятором давления. Он служит для подачи в пневматическую систему порции морозостойкой жидкости, которая находится в специальном бачке.

Антифризный насос должен работать только в холодное время года. В теплое время его снимают. Он заполняется смесью этилового (300 см3) и изоамилового (2 см3) спиртов.

Разгрузочное устройство . Работает от регулятора давления и расположено в блоке цилиндров компрессора. Когда давление сжатого воздуха в системе достигает 0,75 МПа срабатывает регулятор давления Б. Поступление воздуха в систему тормозов прекращается, так как открываются впускные клапаны 4 обоих цилиндров под действием воздуха попадающего из баллона через трубопровод в разгрузочный канал и поднимают плунжеры, которые в свою очередь открывают клапаны.

При снижении давления происходит обратный процесс. Плунжеры опускаются и на клапаны перестает действовать разгрузочное устройство.

Сжатый воздух поступает в баллоны, до тех пор, пока давление в них не достигнет 0,75 МПа.

Блок цилиндров и головку блока во время работы охлаждают жидкостью, поступающей из системы охлаждения в водяную рубашку блока цилиндров компрессора. По маслопроводу поступает масло, которое смазывает трущиеся детали компрессора.

Тормозной кран . Тормозной кран предназначен для управления колесными тормозами автомобиля и прицепа. Тормозной кран служит для управления тормозами автомобиля в результате регулировки подачи сжатого воздуха из баллонов к тормозным камерам.

Рис. Тормозной кран автомобиля ЗИЛ

1 – корпус рычагов, 2 – двойной рычаг, 3 – болт, 4 – кулачок, 5 – тяга, 6 – нлаправляющая, 7 – шток секции торможения прицепа, 8 – диафрагма, 9 и 12 – седла клапанов, 10 – впускной клапан, 11 – выпускной клапан, 13 – включатель стоп-сигнала, 14 – диафрагма стоп-сигнала, 15 – шток секции торможения автомобиля, 16 – корпус тормозного крана.

Тормозной кран обеспечивает постоянное тормозное усилие при неизменном положении тормозной педали и быстром растормаживание при прекращении нажатия на педаль.

Корпус тормозного крана разделен на две секции – нижняя управляет тормозами автомобиля, а верхняя – тормозами прицепа. В каждой секции между крышкой и корпусом закреплена диафрагма из прорезиненной ткани с гнездом выпуклого клапана. Крышки секций снабжены двойными клапанами, расположенными на одном стрежне и имеющих общую пружину. В корпусе тормозного крана расположены два штока с пружинами 7 и 15.

К корпусу тормозного крана прикреплен корпус рычагов, в котором, в свою очередь, находятся двойной рычаг 2 и тяга 5. Двойной рычаг состоит из двух половин, соединенных между собой подвижной осью.

Если нажать на педаль тормоза, то тяга5 смешается влево, увлекая за собой верхний рычаг 2, перемещает шток 7 верхней секции влево. Когда верхний шток 7 упрется в ограничительный болт 3, нижний конец верхней половины рычага отводит нижнюю половину рычага вправо вместе со штоком нижней секции. Тормоза прицепа включаются несколько раньше, чем тормоза автомобиля, что исключает столкновение прицепа с автомобилем. Рис. Схемы действия тормозов: а – при растормаживании, б – при торможении. 1 – компрессор, 2 – тормозной кран, 3 и 13 – выпускные клапаны, 4 и 5 – впускные клапаны, 6 – разобщающий кран, 7 – воздухораспределитель, 8 – воздушный баллон прицепа, 9 – тормозная камера колеса прицепа, 10 – воздушный баллон автомобиля, 11 – тормозная камера колеса автомобиля, 12 – пружина впускного клапана, 14 – тяга.

верхней секции открыт в расторможенном состоянии, и сжатый воздух из баллонов проходит в воздухораспределитель и заряжает баллон прицепа.

Выпускной клапан 3 открыт и сообщает тормозные камеры автомобиля с атмосферой, при закрытом впускном клапане 4.

При нажатии на педаль тормоза, тяга 14 перемещается влево вместе со штоком и верхним концом рычага 2, отводя за собой седло клапана 13. Под действием пружины 12 впускной клапан верхней секции закрывается, а выпускной открывается. Сжатый воздух из баллона прицепа поступает в тормозные камеры 9, а воздух из воздухораспределителя выходит в атмосферу. Колеса прицепа будут заторможены.

Торможение на стоянке осуществляется механизмом ручного привода тормозов прицепа, соединенного с центральным тормозом автомобиля.

Манометр позволяет проверять давление воздуха как в воздушных баллонах, так и в тормозных камерах системы пневматического привода. Для этого он имеет две стрелки и две шкалы. По нижней шкале проверяет давление в тормозных камерах, по верхней – в воздушных баллонах.

Воздушный фильтр предназначен для очистки воздуха, поступающего от компрессора в пневматическую систему от влаги и от масла. Он установлен на поперечной балке крепления воздушных баллонов. Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Дисковые тормоза для грузовиков – Основные средства

В. Мамедов

В предшествующих номерах мы уже познакомили вас с конструкциями подвесок и главных передач грузовых автомобилей и автобусов. Теперь представляем обзор конструкций еще одного механизма, присущего как задним, так и передним мостам, ставшего символом технического прогресса – дисковых тормозных механизмов

Постепенно дисковые механизмы в качестве колесных тормозов получают все большее распространение на грузовых автомобилях самого разного назначения. Как известно, вначале они выполняли функцию лишь трансмиссионного тормоза.

[b]Дисковый колесный тормоз грузового автомобиля большой грузоподъемности:[/b] 1 – тормозной барабан; 2 – тормозные диски; 3 – стальной шарик; 4 – накладка; 5 – уплотнительное кольцо; 6 – стяжная пружина

Дисковые тормоза перед барабанными имеют целый ряд преимуществ:

  1. пониженную чувствительность к изменению коэффициента трения;
  2. возможность уменьшения удельного давления в трущихся парах за счет значительного увеличения поверхности трения;
  3. более равномерный износ фрикционных накладок;
  4. одинаковую эффективность тормоза при движении автомобиля вперед и назад;
  5. пониженную температуру обода колеса и прилегающей к нему бортовой части шины;
  6. простоту обеспечения одинакового тормозного момента правых и левых колес;
  7. меньшую чувствительность тормоза к изменениям температуры накладок;
  8. большую жесткость конструкции, достаточную компактность колесного тормоза, простоту обслуживания и регулировок;
  9. возможность установки небольших зазоров, что позволяет увеличить передаточное число в приводе и сократить время срабатывания тормозов;
  10. легкость герметизации колесного тормоза (для грузовых автомобилей повышенной проходимости).
[b]Дисковый тормоз с самоусилением системы Chrysler:[/b] 1 – ступица колеса; 2 – внутренний диск; 3 – наружный диск; 4 – шарик разжимного механизма; 5 – крышка тормоза; 6 – суппорт тормоза; 7 – тормозной цилиндр; 8 – устройство для автоматической бесступенчатой регулировки зазора в дисковом тормозе

Последнее обстоятельство объясняет тот факт, что для армейских автомобилей было создано немало удачных конструкций колесных дисковых тормозов задолго до того, как ими обзавелись магистральные и городские коммерческие грузовики. Именно тяжелые условия эксплуатации таких машин и повышенные требования к их тормозным системам стали причиной разработки дисковых тормозов, первые варианты которых родились в конце 1950-х годов. При их разработке в те годы внимательно изучался опыт применения дисковых тормозов в авиации. Много времени отняло создание специальной тормозной жидкости, выдерживающей продолжительный нагрев до высокой температуры, а также поиск фрикционных пар, обеспечивающих высокий ресурс узла.

В одной из первых конструкций дискового тормоза для грузовика большой грузоподъемности заложено серводействие (самоусиление при работе) и применен пневматический привод. Серводействие обеспечивают стальные шарики, двигающиеся по наклонным поверхностям углублений (лунок) при смещении одного диска относительно другого.

[b]Изменение тормозного момента по времени:[/b] а) – колодочный барабанный тормоз; б) – дисковый тормоз с полным охватом без серводействия

В середине 1960-х компания Chrysler предложила свою конструкцию дискового колесного тормоза для автомобиля повышенной проходимости. Он был герметичным и тоже имел самоусиление при работе. Тормозной механизм находился внутри корпуса, одной из половин которого являлась ступица колеса. Диски с фрикционными накладками располагались между трущимися поверхностями корпуса и крышки корпуса. Тормоз включался при помощи двух рабочих цилиндров. При торможении поршни расходились, и диски поворачивались на некоторый угол в противоположные стороны. При этом шарики, перекатываясь по наклонным поверхностям, раздвигали диски и прижимали их к стенкам тормозного барабана. Такой механизм называют дисковым тормозом с вращающимся корпусом. Различают также дисковые тормоза с полным или частичным охватом, т.е. трение может происходить по всей или по части поверхности диска.

[b]Дисковый тормоз с полным охватом с вращающимся корпусом без серводействия:[/b] 1 – вращающийся корпус; 2 – фрикционные накладки; 3 и 7 –  диски; 4 и 6 – ролики; 5 –  кольцо механизма включения; 8 и 9 – шестерни; 10 – вал Дисковый тормоз с полным охватом с вращающимся корпусом с серводействием фирмы Ausco Lambert (США)

В тепловом отношении лучшей стала конструкция, представляющая собой дальнейшее развитие идеи дискового тормоза с вращающимся корпусом. Этот тормоз не обладал серводействием, но имел полный охват и посеребренный корпус. Благодаря этому поверхность теплоотдачи стала значительно больше, чем у дисковых тормозов с частичным охватом, в которых вращающийся диск обязательно должен был быть гладким. Поскольку конечная температура зависела от величины поверхности трения, при равной мощности, затрачиваемой на торможение, конечная температура была тем меньше, чем была больше поверхность трения.

В середине 1960-х годов около 50% всех тяжелых тягачей, выпускавшихся в США, были снабжены дисковыми тормозами с вращающимися дисками, серводействием и с полным охватом. У дисковых тормозов такого типа поверхность трения была на 40 – 50% больше, чем у колодочных, имевших такой же занимаемый объем и близкую массу. Вследствие этого у дисковых тормозов износ и температура поверхности трения были значительно меньше, чем у колодочных.

Сравнительные испытания дисковых и колодочных тормозов были проведены на грузовике полной массой 14,0 т при торможении со скорости 30 км/ч в течение 12 мин. Они показали, что барабанный тормоз массой 80 кг способен развивать мощность 18,5 л.с., дисковый тормоз с частичным охватом и массой 110 кг развивает 23,8 л.с., а дисковый тормоз с полным охватом и массой 85 кг – 27,5 л.с.

[b]Схема устройства дискового тормоза фирмы Lucas Girling с пневматическим приводом:[/b] 1 – подвижное кольцо; 2 – шарик; 3 –  неподвижное кольцо; 4 – рычаг, соединенный со штоком тормозной камеры; 5 –  втулка; 6 – опора; 7 –  муфта; 8 –  кольцо; 9 –  пружина; 10 –  нажимной диск; 11 – фрикционные накладки; 12 – тормозной вентилируемый диск

Уменьшение тормозного момента у барабанного тормоза в начальный период объясняется более сильным нагревом барабана по сравнению с колодками. В конце торможения температура колодок повышается, и тормозной момент несколько возрастает. В дисковом тормозе с полным охватом без самоусиления тормозной момент в процессе торможения практически не меняется. Следовательно, в этом случае среднее значение момента будет значительно выше, чем у колодочного тормоза, а время торможения на 20 – 30% меньше.

В Европе дисковые тормоза на грузовиках появились позже, чем в США, примерно через 20 лет после их дебюта на легковых автомобилях. «Первопроходцем» в этом стала французская компания Renault V.I. в 1980-х годах. Сначала дисковые тормоза появились на грузовиках полной массой 6 т, затем полной массой 10 т, а впоследствии – на автобусах и седельных тягачах для автопоездов полной массой 40 т. За Renault V.I. их начали устанавливать IVECO, MAN, Volvo, ERF, Scania, Mercedes-Benz.

[b]Схема клинового разжима в приводе дискового тормозного механизма фирмы Bendix:[/b] 1 – ролики; 2 – шток тормозной камеры; 3 – корпус механизма; 4 – неподвижная часть клина; 5 – подвижная часть клина

Поначалу дисковые тормоза предлагали в качестве опции, в настоящее время на множестве моделей грузовиков с различной допустимой полной массой они стали стандартным оборудованием. Задержка применения дисковых тормозов в Европе объяснялась двумя причинами: их более высокой ценой и действующими нормами ЕЭК ООН, которые можно было выполнить, имея барабанные тормоза. Ситуация изменилась к концу 1980-х, когда допустимая нагрузка на передний мост выросла с 6 – 6,5 до 7 – 7,5 т, а на задний – до 13 – 14 т. При постоянном росте мощности двигателей автомобилей резко возросли динамические нагрузки на передний мост при торможении.

Распространение шин с малым сопротивлением качению и улучшение аэродинамических свойств магистральных автопоездов также ужесточили требования к эффективности тормозов. Снижение центра тяжести транспортных средств и стремление к уменьшению погрузочной высоты привели к замене ставших привычными 22,5-дюймовых шин покрышками с посадочным диаметром 19,5 дюйма. Сокращение (в среднем на 25%) объема внутри колеса, где размещался тормозной механизм, практически свело на нет применение барабанных тормозов на машинах, оснащенных 19,5-дюймовыми колесами.

[b]Схема клинового разжима в приводе дискового тормозного механизма фирмы Bendix:[/b] 1 – ролики; 2 – шток тормозной камеры; 3 – корпус механизма; 4 – неподвижная часть клина; 5 – подвижная часть клина

Перед конструкторами тормозных систем встала сложная задача создания надежного привода дисковых тормозов. Гидравлический привод ввиду возможного «залипания» из-за перегрева скоб грозил лишить грузовик тормозов в сложной дорожной ситуации. В итоге он не применяется на машинах с полной массой свыше 12 т, а также на туристических и междугородных автобусах. Получил распространение механический привод с пневмокамерой, освоенный в производстве компаниями Bendix, Rockwell, Perrot и Lucas Girling. К примеру, Bendix применил в приводе клиновый розжим, отличающийся высоким КПД (94%) и легкостью подбора развиваемого усилия регулировкой угла конуса.

У нас в стране дисковые тормоза для вездеходов были разработаны на ЗИЛе еще в 1972 г. Рабочие тормозные механизмы на трехосном автомобиле с бортовым приводом размещались на внутреннем конце приводного вала, передававшего крутящий момент от раздаточной коробки к колесному редуктору. Эффективность торможения обеспечивалась применением жесткой подвижной скобы, вентилируемого диска, автоматической регулировки зазора между колодками и диском. Рабочий и стояночный тормоза были совмещены в едином агрегате.

Заканчивая статью, стоит отметить, что дисковые тормоза, разработанные по заданию автомобилестроительных компаний специальными фирмами, уже прошли стадию «детских пеленок» – они полностью отработаны и, несмотря на их более высокую стоимость, востребованы транспортниками, заказывающими их во все возрастающих количествах при покупке новых грузовиков.

[b]Схема клинового разжима в приводе дискового тормозного механизма фирмы Bendix:[/b] 1 – ролики; 2 – шток тормозной камеры; 3 – корпус механизма; 4 – неподвижная часть клина; 5 – подвижная часть клина

Ремонт тормозной системы грузовиков и тягачей в Москве и Московской области в ТЕХПРОЕКТ СА

Ремонт тормозной системы грузовиков

От исправности тормозов зависит не только сохранность машины, но и жизнь, и безопасность водителя, пассажиров и других лиц, поэтому тормозная система должна находиться в исправном состоянии на протяжении всей эксплуатации машины. И ее ремонт имеет первостепенное значение.

Диагностика и ремонт тормозов грузовиков необходим при пробеге каждых 50 тысяч километров, но не реже 1 раза в год. Но если Вас беспокоят следующие проблемы, то медлить нельзя, обращайтесь за помощью сразу:

  • Увеличение тормозного следа
  • Неполадки с педалью тормоза
  • При работе тормозов раздается стук, скрипение или чувствуется пульсация
  • Уход машины в сторону при торможении
  • Чрезмерный износ колодок.

Ремонт тормозной системы автомобиля в ТЕХПРОЕКТ СА

Сервисные и ремонтные работы тормозной системы грузовиков должны производить только квалифицированные мастера, нельзя доверяться в этом вопросе неспециалистам.

В грузовом автотехсервисе ТЕХПРОЕКТ СА собран штат профессиональных механиков, автослесарей и инженеров, имеющих необходимую квалификацию и опыт для проведения диагностических работ ремонтных работ разной степени сложности. Есть специалисты для расшифровки кодов с бортового компьютера и диагносты для определения причины неисправности. При нахождении поломки автослесарь проведет ремонт или замену изношенных деталей.

Оказываем следующие услуги по ремонту тормозной системы грузовиков, импортных и отечественных седельных тягачей:

  • Замена колодок
  • Камеры
  • Накладок
  • Опорных колец
  • Ремкоплета суппорта
  • Барабанов
  • Дисков
  • Смазку всех механизмов
  • Регулировку тормозов.

Мастера нашего автосервиса быстро вернут машину к работе, качественно проведя диагностику и ремонт.




Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *