Установка резисторов-обманок для светодиодных ламп

Установка резисторов-обманок для светодиодных ламп

При установке светодиодных ламп в автомобиль некоторые владельцы сталкиваются с проблемами частого мигания поворотников и ошибок бортового компьютера. Как их решить?..

При установке светодиодных ламп в автомобиль некоторые владельцы сталкиваются с проблемами.

 

Первая: при установке светодиодных ламп в поворотники, реле поворотов срабатывает чаще, как будто перегорела какая нибудь лампа. Происходит это по тому, что реле поворотов расчитанны на стандартные галогеновые лампы, мощность которых может быть в диапазоне от 1W до 21W. Светодиодные лампы потребляют от 0.1 W до 6W.

Выходом из этой ситуации является установка дополнительных резисторов (обманок) или специальных реле поворотов, рассчитанных на использование светодиодных ламп.

Поскольку специальные реле довольно дороги и их можно использовать только со светодиодными лампами (например, нельзя поставить  2 светодиодные лампы и 2 галогеновые), то рассмотрим вариант подключения резисторов (обманок).

Для примера расчёта возьмём стандартный автомобиль, у которого установлены 2 лампы поворотников в передних фарах, 2 повторителя поворотов на крыльях и 2 лампы поворотников в задних фонарях. Далее нам необходимо определить тип лампы: обычно в фарах и фонарях используются лампы мощностью 21W, а в повторителях на крыльях или зеркалах — мощностью 5W.

И так, у нас 4*21W+2*5W. Расчётная мощность реле 94W. При такой мощности реле включает поворотники 1 раз каждые 0.5 секунды. При замене только передних ламп и ламп в повторителях на светодиодные, суммарная мощность ламп равна 2*3W+2*1W+2*21W = 50W . При такой мощности реле бу

Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов — Автоблоги

Всем привет!

Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.

Часть 1. Предисловие

Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.

Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.

По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.

Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.

Поэтому, в «правильные» светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:

1. Дешевые автомобильные светодиодные лампы на 12 В.

Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания.Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.

Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы напряжения, которые защитят лампы от скачков напряжения в бортовой сети автомобиля и подадут на лампы стабильные 12В. Однако, такой способ имеет ряд существенных недостатков:

Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.

Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.

Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.

Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.

Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.

Часть 2. Немного теории

Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.

Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):

2. Типовая схема светодиодной лампы без стабилизатора, на 9 светодиодов

Обозначение элементов на схеме, слева направо:

R0: Резистор-обманка для систем контроля исправности ламп. О нем я, возможно, сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет. I0 — ток через резистор R0.

VDS1: Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.

R1-R3: Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.

HL1.1-HL1.3: Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.

I1-I3: ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.

Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:

3. Упрощенная схема светодиодной лампы с одним токоограничивающим резистором

От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.

Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока

Для доработки ламп понадобятся:

1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.

2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.

Пример 1: Цилиндрические лампы типа C5W или C10W

Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):

4. Отпаиваем контактные колпачки

На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).

5. Элементы светодиодной лампы

Для сравнения, на фото 6 приведена более «правильная» лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:

6. Внизу лампа с тремя токоограничивающими резисторами, вверху — с одним

На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:

7. Лампа с COB-матрицей

Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.

Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:

Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.

Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.

Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.

Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.

На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):

8. Впаиваем резистор с увеличенным сопротивлением.

Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:

9. Для ламп подсветки номера, сопротивление штатного резистора увеличено в 7 раз

Пример 2. Бесцокольные лампы T10 W5W

Отгибаем контактные усики и разбираем лампу (фото 10):

10. Светодиодная лампа T10 W5W с несколькими светодиодами SMD

Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):

11. Примитивная конструкция с одним резистором

Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):

12. Лампа T10 W5W с одним мощным светодиодом

Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):

13. Для меньшего нагрева, использовано два резистора вместо одного

Пример 3. Малогабаритные лампы T5 для приборной панели

Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):

14. Лампы для приборной панели

15. Один светодиод и один резистор

Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.

Часть 4. Некоторые практические советы

Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):

16. Запаять деталь другого размера не всегда возможно

Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):

17. При работе феном, прикрывайте соседние детали от горячего воздуха

Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.

18. Для более надежной пайки колпачков, можно добавить припой на контактные пятачки

Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):

19. Рекомендую удалить декоративные стекла с матриц COB

И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись «КОЛЯ», нанесенная промышленным способом? (фото 20):

20. И в Китае есть свои Коли 🙂

Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.

Источник

Обманки для светодиодных автомобильных ламп.

При замене штатной лампы накаливания на светодиодную автомобильную лампу Вы столкнулись с проблемой бортового компьютера? Он начал выдавать ошибку, «неисправность лампы»? Т.е. срабатывает система определения неисправностей. Она находится во многих современных автомобилях и сигнализирует о том, что какая-либо лампа вышла из строя. Происходит это по тому, что светодиодные лампы потребляют намного меньше энергии, чем галогеновые, на которые данная система и рассчитана.

готовая обманка с коннекторами для ламп w5w t10

Чтобы решить эту проблему надо установить специальный нагрузочный резистор. В народе его попросту называют «обманкой». Он создает нужную нагрузку в сети для исчезновения ошибки о замене ламп. Его мощность, в сумме с мощностью светодиодной лампы дает такое количество ватт, которое не выходит за рамки погрешностей систем контроля.

Вы установили светодиодные лампы в поворотники и при этом реле поворотов срабатывают чаще, как бывает при перегорании лампы. Происходит это из-за того, что реле поворотов рассчитаны на стандартные галогеновые лампы, которые потребляют гораздо больше мощности, чем светодиоды. Для того чтобы избавиться от нежелательного эффекта увеличения частоты мигания поворотов так же требуется установить резистор «обманку»

Установка довольно проста. Дополнительное оборудование не требуется. Благодаря этому монтаж можно произвести самостоятельно. В комплекте поставки имеются специальные коннекторы, с помощью которых и осуществляется подсоединение обманки к цепи лампы.

установа резистора обманки 1 этап

установа резистора обманки 2 этап

установа резистора обманки 2 этап

установа резистора обманки 4 этап

Нагрузочный резистор подойдёт к любой марке автомобиля!

Но стоит обратить внимание на то, что при работе резистор выделяет большое количество тепла. Поэтому рекомендуется устанавливать его к металлической поверхности на некотором расстоянии от легко плавящихся элементов.

У нас в наличии находятся два вида обманок. Первый вид является уже готовым к установке решением. Эти резисторы могут выполнять свои функции в поворотных огнях и стоп-сигналах.

обманка для двух контактной лампы

Со вторым видом дела обстоят немного сложнее. Такие резисторы можно обозначить — «для профессионалов». Их монтаж необходимо проводить самостоятельно. Для этого в составе комплекта имеются специальные клеммы. Такие обманки применяют в противотуманных фарах и фарах ближнего или дальнего света.

резистор

Каталог обманок для светодиодных автомобильных ламп.

Нагрузочный резистор для светодиода в автомобиль — Все о Лада Гранта

Многие любители тюнинга автомобилей предпочитают менять лампы подсветки кнопок, бардачка, багажника, салона, а зачастую и габаритных огней на светодиоды. Их преимущества очевидны: они более договечны, имеют низкое энергопотребление по сравнению с лампами накаливания при большей светоотдаче, не нагреваются как лампы.
При всем этом просто взять светодиод и установить его вместо лампы накаливания не получится. В данной статье рассмотрим, как правильно производить замену обычных ламп на светодиоды и как их правильно подключать в автомобиле.

Итак, для представления полной картины нам необходимо уяснить, что:

  • Напряжение бортовой сети автомобиля при заведенном двигателе составляет 13-14,5 В.
  • Напряжение питания светодиода – в среднем 3,5 В. Причем оно различается. Для желтых и красных цветов это 2-2,5 В; для белых, синих, зеленых – 3-3,8 В.
  • Средний ток малых светодиодов – 20 мА.
  • Контакты светодиода имеют полярность, плюс и минус. Если перепутать полярность, светодиод гореть не будет.

Соответственно, подключать светодиоды напрямую к бортовой сети автомобили нельзя, они сразу же выйдут из строя.

Как же тогда их подключать?

В продаже имеются готовые светодиодные кластеры, которые уже рассчитаны на питание в 12 В. Они обычно состоят из трех светодиодов и резистора, на котором гасится лишнее напряжение. По такому же принципу устроена и светодиодная лента, которая состоит из параллельно соединенных кластеров. Резать ее нужно только в специально отмеченных местах, которые являются местами соединения параллельных кластеров.
Правда, при снижении питающего напряжения яркость диодов будет тоже падать, а при повышении – возрастать, так что если напряжение в бортовой сети автомобиля плавает, то тоже самое будет происходить и со светом диодов.

По такому же принципу можно сделать такой кластер своими руками, соединив необходимое количество светодиодов последовательно (плюс одного к минусу другого), а получившиеся 2 вывода на концах цепочки – к бортовой сети.
Например, светодиодов, рассчитанных на напряжение 3,5 В (белые) понадобится 3 штуки (3 х 3,5 = 10,5 В). Оставшееся напряжение компенсируем резистором сопротивлением 100 – 150 Ом с мощностью рассеивания 0,5 Вт.

Вот таким образом можно включить нужное количество светодиодов, собирая их отрезками по 3 штуки с резистором, и соединяя отрезки параллельно. Где это можно применить на практике, расскажет эта статья.

Номинал гасящего резистора рассчитывается по закону Ома. Если вы с этим не знакомы, то на практике можно для бортовой сети автомобиля принять следующие номиналы сопротивлений: для одного светодиода – 500 Ом, для двух – 300 Ом, для трех, как указано выше – 150 Ом.

Для желающих освоить практический метод подбора сопротивлений для питания светодиодов в автомобиле рассмотрим его подробнее.

Для этого нам понадобится мультиметр, способный замерять напряжение и ток. Подойдет и простейший китайский. Вот как он может выглядеть:

Закон Ома для нашего участка цепи со светодиодом и резистором выглядит так: R = U/I (R – сопротивление, Ом; U- напоряжение, В; I – ток, А). Таким образом, чтобы получить требуемое сопротивление, нужно разделить напряжение, которое требуется погасить на величину тока, которую нужно получить в нашей цепи.

Возьмем для примера белый светодиод со следующими параметрами: напряжение питания – 3,5В, номинальный рабочий ток – 20 мА (или 0,02 А).

Мультиметром замеряем напряжение в точке подключения светодиода (если это габаритный огонь – то на контактах патрона лампы габарита) при заведенном двигателе, допустим мы получили 13 В.

Если мы подключаем один светодиод, то нужно вычесть из величины замеренного напряжения номинальное напряжение, на которое рассчитан светодиод (3,5 В).

Ток в нашей цепи должен не превышать 0,02А, чтобы светодиод не вышел раньше времени из строя.

Тогда величина сопротивления будет:

9,5 / 0,02 = 475 (Ом)

Чтобы наш резистор в процессе работы не сгорел от перегрева, вычисляем мощность, на которую он должен быть рассчитан. Для этого надо умножить гасимое им напряжение (9,5 В) на ток в цепи (0,02 А).

9,5 х 0,02 = 0,19 (Вт)

Берем с запасом, то есть от 0,5 до 1 Вт.

Теперь у нас есть данные резистора: не менее 475 Ом, мощность 0,5 -1 Вт, берем эти цифры и идем с ними в радиолавку.

Убедиться в правильности расчетов можно померяв ток в нашей цепи при помощи того же мультиметра. Для этого щупы мультиметра нужно включить в разрыв между резистором и светодиодом.

Он должен показать не более 0,02А, на которые рассчитан светодиод, больший рабочий ток резко сократит срок его службы.

Таким образом можно подключать и несколько светодиодов, нужно только знать рабочее напряжение светодиодов и их ток, и рассчитать номинал резистора, подставив данные в формулу выше.

Также полезно подключить к светодиоду обычный диод обратной полярностью, для защиты нашего светодиода от напряжения обратной полярности, которого он очень не любит. Необходимо для применения в отечественных авто преклонного возраста.

На сегодня все, в следующей статье рассмотрим более продвинутый способ запитывания светодиодов в автомобиле при помощи стабилизатора.

Современные автомобили, преимущественно произведенные в Европе, в бортовом компьютере оснащены системой контроля состояния ламп. Если владелец решил сменить штатные лампочки на светодиодные, он может столкнуться с некоторыми проблемами. Дело в том, что малое потребление электроэнергии светодиодными автомобильными лампами определяется компьютером как неисправность.

Что такое обманка

Такая деталь, как обманка (или резистор), позволяет решить вышеуказанную проблему. Устройство создает оптимальную нагрузку цепи током, превышающую ту, что дают светодиодные лампы для автомобилей. Другими словами, происходит имитация активного потребления электричества до порога, который расценивается системой контроля как норма, и она не срабатывает.

Конечно, многие автомобилисты уже давно оценили практичность LED-автоламп, и позаботились о том, чтобы заменить стоковые приборы на них. Однако, например, при установке освещения на светодиодах в поворотники, реле поворотов реагирует так, словно лампа перегорела. Это происходит потому, что реле рассчитано на мощность, характерную для галогеновых устройств. Специальные контроллеры для светодиодных ламп стоят немало, и обманка – отличный выход из ситуации.

Наш интернет-магазин предлагает широкий ассортимент обманок для светодиодной лампы с цоколем W5W (T10), H7, HB3 / HB4, W21/5W (7443), H8/h21/h26 и других, а также автомобильный нагрузочный резистор-обманку для указателей поворота. Продукция тщательно отобрана и прошла проверку на работоспособность.

Помимо реле существует еще одна проблема: бортовой компьютер. В транспортных средствах при подключении LED-ламп начинает мигать сигнал на приборной панели. Более продвинутые системы отключают питание или переключают ее на другие фонари (к примеру, стоп-сигнал будет перенесен на противотуманные фары).

Как установить обманку

Монтаж резистора выполняется посредством коннекторов, входящих в комплект. Они не портят провода, несмотря на то, что установка производится через небольшой разрез изолирующего материала, так обеспечивается контакт с проводником. Демонтаж происходит также просто, без каких-либо видимых следов установки.

Этапы монтирования обманок:

  • Через реле с помощью двух проводов «+» и «-» от источника питания к лампочке подается напряжение.
  • Параллельно в цепь подключается резистор. Один из его проводов коннектором соединяется с плюсом, второй – с минусом.
  • Обязательно обратить внимание на отсутствие соприкосновения обманки и пластика в машине. Во время работы резисторы греются, и пластиковые детали могут расплавиться под действием высокой температуры.
  • В результате образуется бесперебойная система, полностью соответствующая заводским характеристикам.

Технические параметры:

  • предельная рассеиваемая мощность: 18-50 Вт;

Термин «мощность» не означает потребляемую электроэнергию резистором. Это предельная рассеиваемая мощность, та энергия, которая может быть разнесена без перегрева. Обманки позволяют без особых усилий решить вопросы с подсоединением светодиодных ламп, которые дают яркий свет и обладают превосходными эксплуатационными свойствами. Качественное освещение – залог вашей безопасности в дорожном движении!

Звоните, пишите или воспользуйтесь формой обратной связи

Обманка для светодиодов T10 W5W устанавливается для предотвращения возникновения ошибки компьютера при замене штатных ламп накаливания.

Нагрузочный резистор 50w 8Ohm для светодиодных автоламп 1156 (P21W) устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 50w 8Ohm для светодиодных автоламп h21 устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 50w 8Ohm для светодиодных автоламп H7 устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 25w 8Ohm для светодиодных автоламп устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 50w 6Ohm для светодиодных автоламп устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Реле указателей поворотов для светодиодных автоламп устанавливаются для предотвращения ошибки и быстрого мигания поворотников. При установке реле указателей поворота не требуется установка дополнительных нагрузочных резисторов для светодиодов.

Реле указателей поворотов для светодиодных автоламп устанавливаются для предотвращения ошибки и быстрого мигания поворотников. При установке реле указателей поворота не требуется установка дополнительных нагрузочных резисторов для светодиодов.

Реле указателей поворотов для светодиодных автоламп устанавливаются для предотвращения ошибки и быстрого мигания поворотников. При установке реле указателей поворота не требуется установка дополнительных нагрузочных резисторов для светодиодов.




Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *