Устройство фар автомобиля

Светотехника на машине – основа безопасности и удобства на дорогах. Это такая же неотъемлемая часть транспортного средства, как колёса и руль. В то же время, видов и конфигураций световой техники на машину существует довольно много. В этой статье мы рассмотрим основные типы передних фар и их назначение.

По прямому функционалу передние фары автомобиля можно разделить на отдельные классы:

  • Габаритные огни – предназначены для обозначения габаритов транспортного средства, стоят спереди и сзади.
  • Ближний свет – основные фары, предназначенные для освещения дороги непосредственно перед машиной, светят они ярко, но только на ограниченное небольшое расстояние, около 40–50 метров.
  • Дальний свет – фары, светящие на большое расстояние, на 200-300 метров. Они обеспечивают комфортный световой путь даже на очень большой скорости.
  • Противотуманные фары – дополнительные фары для ухудшенных погодных условий (метель, туман и прочее). При одновременном использовании с ближним светом противотуманки сильно слепят других участников движения.
  • Ходовые огни работают днём для дополнительного обозначения машины. Впервые получили применение в странах Скандинавии и Британских островов, там, где иногда днём освещение недостаточное для полного обеспечения безопасности.
  • Специальные передние световые устройства, вроде раллийных фар, световых искателей, прожекторов и прочее.

Устройство фары

Устройство фары автомобиля примерно одно для всех модификаций. Свечение создаётся за счёт трёх сегментов фары.

Источник света

Излучение лампы не направлено прямо, как фонарь, на самом деле, она скорее светит во все стороны, направляя частицы света на следующий сегмент.

Отражатель

Он бывает разной формы, часто это относительно правильный конус, но может быть множество вариаций в зависимости от конфигурации фары и дизайна передней части машины в целом. Обычно это стекло или пластмасса с небольшим напылением алюминия. Как вполне ясно из внутренней формы слова – основная его задача – отражать, весь свет, который на него попадает. При этом отражении он усиливается. Специальные корректоры в свою очередь ограничивают световую зону, направляя луч света. В плане отражения света можно также выделить три основных подтипа:

  1. Параболический отражатель. Самый простой, дешёвый и распространённый. Это статичная конструкция, отражающая свет горящей лампы. Такую фару нельзя подкорректировать, яркость, интенсивность, направление света в них статичны.
  2. Рефлектор свободной формы (Free Form Reflector). Такой рефлектор разделён на несколько зон (количество их может сильно варьироваться), каждая отражает и направляет свой пучок света. Свет таких фар также статичен, но более отчётлив, меньше светопотеря при рассеивании, значительно меньше вероятность ослепления других водителей или себя.
  3. Линзовая оптика. Свет от лампы в этом случае рассеивается и усиливается специальным эллиптическим светоотражателем, но после этого направляется на второй фокус – специальный щиток, вновь собирающий этот свет. От этой перегородки свет снова рассеивается в сторону линзы, та собирает его, где-то обрезая, где-то перенаправляя. Такая оптика максимально исключает чрезмерную светопотерю и ослепление светом. Линзовая оптика дорога, но очень качественна и обеспечивает максимальную безопасность даже в условиях трудной видимости. Главная проблема – вся эта система довольно динамична, в ходе износа или повреждения стабильность линзы может понизиться, могут возникнуть неисправности, светопотери. В таком случае линза требует специфической корректировки в автосалоне.

    Принцип работы ксеноновых фар

Рассеиватель

Это внешняя часть фары, также из стекла или специального материала. Видели на фото или киносъёмках огромные белые листы на штативе? Назначение автомобильного рассеивателя схожее. Его задачи – защищать фару от внешнего воздействия, а также рассеивать и направлять её свет. Скажем, противотуманные фары светят скорее не прямо вперёд, а как бы «под ноги», вниз — вперёд. Для этих функций форма рассеивателя может быть разной. Несколько иной метод работы у светодиодных и матричных фар, мы рассмотрим эту специфику чуть позже, когда будем говорить о светодиодах отдельно.

Это функциональное распределение фар, одинаковое для любого транспортного средства. Можно их разделить и по принципу устройства. Научный прогресс не стоит на месте, технологи и проектировщики задаются одним важным вопросом: как обеспечить максимальную безопасность и дальность освещения, при этом нивелируя ослепляющим фактором. Также важны принципиально надёжность фары, прочность, длительный ресурс использования, экологичность, не забываем о дизайне.

Виды ламп

Фары по методу действия лампы можно выделить в четыре типа:

  • Лампы накаливания
  • Галогенные
  • Ксеноновые
  • Светодиодные

Лампа накаливания

Самые простые, такие же, как обычные лампочки. Работа её обеспечивается вольфрамовой нитью, помещённой в безвоздушную стеклянную колбу. При подаче напряжения происходит нагрев вольфрамовой нити, что и порождает свет. Такие лампы не очень надёжны, они морально устарели: вольфрам постоянно испаряется с нити. Она утончается, что приводит в итоге к разрыву. Также такие устройства легко темнеют и очень восприимчивы к перепадам напряжения. Они ещё широко используются в быту, но постепенно выходят из употребления по причине множественных недостатков. На транспортных средствах уже не используются.

Галогенные лампы

Также часто используются в быту. Механизм её работы примерно такой же, – накаливание вольфрамовой нити, однако за счёт того, что внутрь колбы закачаны пары галогенов (йода или брома), которые взаимодействуют с атомами вольфрама и не дают последним осесть, они двигаются вокруг нити по спирали, периодически снова к ней прилипая.

Срок службы таких ламп во много раз дольше обычных ламп накаливания. Такие лампы имеют долгий ресурс эксплуатации, Здесь многое зависит от качества и, соответственно, стоимости. Хорошие галогенные лампы могут работать в течение нескольких лет постоянной эксплуатации. В технической документации обычно прописывают небольшие сроки службы, около тысячи часов непрерывной работы и далее, по факту же качественная галогенная лампа может прослужить в два–три раза дольше, чем предполагает срок эксплуатации. Важна здесь также полная исправность проводки в автомобиле. Неполадки с электроникой или аккумулятором сказываются на длительности работы фар.

Ксеноновые лампы (газоразрядные)

Также распространены в автомобильной промышленности. Первыми здесь были, как всегда, немцы – они поставили ксеноновые фары на BMW седьмой серии в 1994 году. Работает такое устройство за счёт нагревания газа ксенона – благородного газа, при нагревании выделяющего множество света. Такие лампы значительно мощнее газоразрядных. Скажем, при мощности в 35 Вт ксеноновая лампа рождает световой поток в 3000–3200 лм, что на треть больше, чем способна выдать галогенная лампа при вдвое большей мощности.

Ксеноновые лампы экономят электричество, выдают много света и долго служат (срок службы ксеноновой фары составит около двух тысяч часов, примерно в два–три раза больше, чем у своего галогенного аналога.), но дорого стоят. В таком устройстве кроме простых трёх агрегатов, о которых мы уже говорили, есть ещё и специальные нагреватели ксенона, состоящие из блока розжига и электронной системы управления температурой и мощностью. Эти механизмы повышают цену на фару в несколько раз.

Светодиоды

В основе светодиодного фонаря – полупроводниковый кристалл, который преобразует электрический ток в свет. Сначала такие устройства появились в промышленной сфере, но теперь они широко интегрированы в быт. В автомобильной промышленности светодиоды начали использоваться для побочного освещения — стоп-сигналы, подсветка приборной доски, освещение в салоне и так далее.

Считалось, что светодиодные лампы недостаточно ярки для установки в головные фары. Сейчас они светят очень ярко за счёт того, что устанавливаются целыми сегментами-сотами внутрь фары. Один светодиод выделяет меньше света, чем ксеноновая лампа, но установленные вместе они вполне покрывают нужное для безопасности количество освещения. Светодиод сам по себе представляет самодостаточный источник света. На некоторых моделях авто светодиодная фара состоит из двух–трёх десятков отдельных диодов. В каждом из них есть линза, кристалл, анод и катод, обеспечивающие постоянно напряжение тока. Перегорание или неисправность одного диода обычно не тащит за собой поломку остальных.

Лазер

Самая новая технология, которую активно развивают, это лазерные фары. Впервые такие фары применили на футуристичном автомобиле BMW i8. Технология фары достаточно проста — лазер светит на линзу с фосфором, который в свою очередь начинает излучать яркий свет, а отражатель направляет этот свет на дорогу.

Они превосходят светодиодные фары по освещению и энергопотреблению, а срок службы сопоставим. Существенным недостатком этих фар является их стоимость, они являются самыми дорогими фарами современности, не менее 10 тыс. евро, за эту сумму можно купить новый бюджетный автомобиль.

Современные разработки

Момент устройства светодиодной фары доведён до технологического абсолюта в фаре матричной. В ней водитель может менять и подстраивать под себя и нужды дорожной ситуации отдельный диод. Такие матричные светодиоды могут индивидуально подстроиться под любую, даже сложную обстановку с видимостью.

Головные лампы на светодиодах появились десять лет назад. Светодиодные фары на машинах становятся всё популярнее по причине того, что у них практически нет недостатков. Они потребляют мизерное количество электроэнергии, их ресурс в несколько раз может превышать срок службы других фар, при соблюдении температурного режима ресурс эксплуатации такой лампы будет от пяти тысяч часов и более. Единственный, но ощутимый минус – дороговизна. На современном автомобильном рынке фары в целом – удовольствие не из дешёвых и приближается к стоимости лазерных фар – за цену светодиодной фары иногда можно купить целый автомобиль, пускай и подержанный. С другой стороны, такая лампа при правильной эксплуатации может прослужить много лет и ни разу о себе не напомнить, что в итоге может вылиться в солиднейшую экономию.

Изначально светодиодные фары ставились на машины премиум-класса, на некоторые модели Cadillac, Audi. Сейчас же некоторые производители делают фары на светодиодах, которые можно поставить на место фар ксеноновых, так что светодиодное освещение теперь можно ставить и на марки, изначально на это не рассчитанные. В целом мнение автомобилистов сходится в том, что светодиодные фары, так или иначе, захватят рынок.

Проблема с недостатком света решена благодаря технологическим новшествам, а цена будет постепенно снижаться под натиском спроса и уменьшения цен на материалы. Возможно, в недалёком будущем большая часть автомобилей будет оснащена именно светодиодными фарами. Но пока, по объективным причинам основой рынка остаются фары ксеноновые и галогенные.

Конструкция и типы фар

Ближний свет фар является главным при управлении автомобилем. Характеристики ближнего света фар должны давать ассиметричную картину ближнего света, которая выполнена в растянутом визуальном диапазоне по правой стороне дороги.
Для повышения эффективности работы фар применяют различные сложные формы (HNS, PD2). Для улучшения освещения применяют также газозарядные лампы, которые выдают света почти в 2 раза больше галогенных. Фары должны обеспечивать видимость линии раздела между поверхностями освещенными и не освещенными. Такая видимость может создаватся специальными нитями накала, которые используются в лампах (Н1, Н7,НВ4). Это позволяет получить яркость ниже, а тень выше.

ближний свет фар

Требования предъявляемые к лампам:


— уровень минимальной освещенности  (нормальная видимость)
— максимальная сила света (но не ослепляющая водителей автомобилей движущихся на встречу)

Конструктивные особенности фар.

Обычные фары должны обеспечивать качественное освещение, и такой парадокс,- чем больше размер отражателя, тем лучше качество света ближних фар. На геометрическую составляющую диапазона, действие фары увеличивается с ростом высоты установки фары. Такие требования могут быть решены благодаря использованию широких отражателей фар и большего размера.
Короткие фокусные расстояния обеспечивают широкими световыми лучами, что улучшает боковое освещение и является очень полезным на поворотах. Отражатели с плавным переходом состоят из параболоидных секций с разными фокусными расстояниями.


компоненты фары
Однофокусные отражатели. Чтобы обеспечить повышенную эффективность светового потока на вспомогательных участках отражателей имеется 1на фокальная точка с отражателем для получения короткого фокусного расстояния. свет от вспомогательных отражателей нам дает улучшение качества бокового освещения, но не влияет на дальний. (Лампа Н4)

Многофокусные отражатели.
Отличаются многофокусные отражатели тем, что участки для получения пучка света имеют большое количество фокальных точек. Распределение структур осуществляется по вертикальным участкам параболы.

Фары (отражатели типа HNS) Поверхность следующего отражателя включает много элементов. Особенностью поверхности отражателя являются неразрывности и ступенчатости на пограничных поверхностях. Это дает возможность создать такие формы поверхности отражателей, какие нам нужны, и обеспечат максимально стабильное освещение.

отражатель НNS

Фары (PES) Конструкция фар PES включает оптику для улучшения освещения. Данная оптика основывается на использовании эллиптического отражателя. В фарах PES исходящие лучи необходимо направить так, чтобы зона окружения линзы тоже выступала источником светового сигнала. Такой свет применяется с линзами небольших диаметров для того, чтобы не слепить водителей встречных автомобилей.

Освещение автомобиля

освещение автомобиля

К основным фарам освещения траснпортного
средства можно отнести следующие:
— фары ближнего света;
— фары дальнего света;

оптический отражатель

Фары Litronic.
Электронная световая фара характеризуется освещением с помощью ксенона (ксеноновой газоразрядной лампой). Такая лампа сочетае тв себе все преимущества, — высокую интенсивность освещения, наряду с минимальным требованиям к объему отражательной поверхности. Это делает данную модель фары идеальной по сравнению с другими.


регулировка фар Litronic

Автомобильные фары. Устройство и принцип работы.

Чем ксеноновые лампы фар отличаются от галогенных? Кто впервые применил в автомобиле лампы накаливания? Какими бывают «адаптивные» фары? Мы решили проследить весь путь эволюции автомобильных систем освещения — от ацетиленовых горелок до новейших «умных» головных систем, в которых лучи от светодиодов будут освещать дорогу по командам системы навигации.

До лампочки
До лампочки были свечи. Или масляные горелки. Но светили они настолько слабо, что ночью автомобиль было проще оставить дома, чем путешествовать «на ощупь».

Первым источником автомобильного света стал газ ацетилен — использовать его для освещения дороги в 1896 году предложил летчик и авиаконструктор Луи Блерио. Запуск ацетиленовых фар — целый ритуал. Сначала требуется открыть краник ацетиленового генератора, чтобы вода закапала на карбид кальция, который находится на дне «бочонка». При взаимодействии карбида с водой образуется ацетилен, который по резиновым трубкам поступает к керамической горелке, что находится в фокусе отражателя. Теперь шофер должен открыть стекло фары, чиркнуть спичкой — и пожалуйста, в светлый путь. Но максимум через четыре часа придется остановиться — для того, чтобы вновь открыть фару, вычистить ее от копоти и заправить генератор новой порцией карбида и воды.

Однако светили карбидные фары на славу. Например, созданные в 1908 году Вестфальской металлопромышленной компанией (так в то время называлась Hella) ацетиленовые фары освещали до 300 метров пути! Столь высокого результата удалось достичь благодаря использованию линз и параболических рефлекторов. Кстати, сам параболический отражатель еще в 1779 году изобрел Иван Петрович Кулибин — тот самый Кулибин, который создал трехколесную «самокатку» с маховиком и с прообразом коробки передач.

Первая автомобильная лампа накаливания была запатентована еще в 1899 году французской фирмой Bassee & Michel. Но вплоть до 1910 года лампы с угольной нитью накаливания были ненадежными, очень неэкономичными и требовали тяжелых батарей увеличенного размера, которые к тому же зависели от станций подзарядки: автомобильных генераторов подходящей мощности еще не существовало. И тут произошел переворот в «осветительных» технологиях — нити накаливания стали делать из тугоплавкого вольфрама (температура плавления 3410°С), который не «выгорал». Первым серийным автомобилем с электрическим светом (а еще — с электрическим стартером и зажиганием) стал Cadillac Model 30 Self Starter («самозапускающийся») 1912 года. Уже через год 37% американских автомобилей имели электроосвещение, а еще через четыре — 99%! С разработкой подходящей динамомашины исчезла и зависимость от зарядных станций.

Кстати, если вы думаете, что лампу накаливания изобрел Томас Альва Эдисон, то это не совсем так. Да, именно Эдисон всерьез занялся лампочками, когда газ в его мастерской отключили за неуплату. И именно Эдисон в 1880 году представил исчерпывающее обоснование того, что следует использовать лампы с угольной нитью накаливания, помещенной в безвоздушное пространство стеклянного шара. Эдисон придумал и цоколь. Но базовая конструкция лампы накаливания принадлежит русскому электротехнику Александру Николаевичу Лодыгину, уроженцу Тамбовской губернии. Свою разработку он представил на шесть лет раньше. Более того, исторические документы упоминают некоего немецкого часовщика Генриха Гебеля, который сумел с помощью электричества раскалить до свечения обугленное бамбуковое волокно, вставленное в стеклянную колбу, аж 150 лет назад, в 1854 году. Вот только на патент у Гебеля банально не хватило денег…

Ослепительные идеи
Впервые проблема ослепления встречных водителей возникла с появлением карбидных фар. Боролись с ней по-разному: перемещали рефлектор, выводя из его фокуса источник света, с той же целью двигали саму горелку, а также ставили на пути света различные шторки, заслонки и жалюзи. А когда в фарах засветилась лампа накаливания, в электрическую цепь при встречных разъездах даже включали добавочные сопротивления, снижавшие накал нити. Но лучшее решение предложила фирма Bosch, в 1919 году создавшая лампу с двумя нитями накаливания — для дальнего и ближнего света. К тому времени уже был придуман рассеиватель — покрытое призматическими линзами стекло фары, отклоняющее свет лампы вниз и по сторонам. С тех пор перед конструкторами стоят две противоположные задачи: максимально осветить дорогу и не допустить ослепления встречных водителей.

Увеличить яркость ламп накаливания можно, подняв температуру нити. Но при этом вольфрам начинает интенсивно испаряться. Если внутри лампы вакуум, то атомы вольфрама постепенно оседают на колбе, покрывая ее изнутри темным налетом. Решение проблемы нашли во время Первой мировой войны: с 1915 года лампы стали заполнять смесью аргона и азота. Молекулы газов образуют своебразный «барьер», препятствующий испарению вольфрама. А следующий шаг был сделан уже в конце 50-х годов: колбу стали наполнять галогенидами, газообразными соединениями йода или брома. Они «связывают» испаряющийся вольфрам и возвращают его на спираль. Первую галогенную лампу для автомобиля представила в 1962 году Hella — «регенерация» нити позволила поднять рабочую температуру с 2500 К до 3200 К, что увеличило светоотдачу в полтора раза, с 15 лм/Вт до 25 лм/Вт. При этом ресурс ламп вырос вдвое, теплоотдача снизилась с 90% до 40%, а размеры стали меньше (галогенный цикл требует близости нити и стеклянной «оболочки»).

А главный шаг в решении проблемы ослепления был сделан в середине 50-х — французская фирма Cibie в 1955 году предложила идею асимметричного распределения ближнего света для того, чтобы «пассажирская» обочина освещалась дальше «водительской». И через два года «асимметричный» свет в Европе был узаконен.

Де_формация
На протяжении многих лет фары оставались круглыми — это наиболее простая и дешевая в изготовлении форма параболического отражателя. Но порыв «аэродинамического» ветра сначала «задул» фары в крылья автомобиля (впервые интегрированные фары появились у Pierce-Arrow в 1913 году), а затем превратил круг в прямоугольник (прямоугольными фарами оснащался уже Citroen AMI 6 1961 года). Такие фары были сложнее в производстве, требовали больше подкапотного пространства, но вместе с меньшими вертикальными габаритами имели большую площадь отражателя и увеличенный светопоток.

Чтобы заставить такую фару ярко светить при меньших габаритах, следовало придать параболическому отражателю (в прямоугольных фарах — усеченный параболоид) еще большую глубину. А это было чересчур трудоемко. В общем, привычные оптические схемы для дальнейшего развития не годились. Тогда английская фирма Lucas предложила использовать «гомофокальный» отражатель — комбинацию двух усеченных параболоидов с разными фокусными расстояниями, но с общим фокусом. Одним из первых новинку примерил Austin-Rover Maestro в 1983 году. В том же году фирма Hella представила концептуальную разработку — «трехосные» фары с отражателем эллипсоидной формы (DE, DreiachsEllipsoid). Дело в том, что у эллипсоидного отражателя сразу два фокуса. Лучи, выпущенные галогенной лампой из первого фокуса, собираются во втором, откуда направляются в собирающую линзу. Такой тип фар называют прожекторным. Эффективность «эллипсоидной» фары в режиме ближнего света превосходила «параболическую» на 9% (обычные фары отправляли по назначению лишь 27% света) при диаметре всего в 60 миллиметров. Эти фары предназначались для противотуманного и ближнего света (во втором фокусе размещался экран, создающий асимметричную светотеневую границу). А первым серийным автомобилем с «трехосными» фарами стала «семерка» BMW в конце 1986 года. Еще через два года эллипсоидные фары стали просто супер! Точнее — Super DE, как называла их Hella. На этот раз профиль отражателя отличался от чисто эллипсоидной формы — он был «свободным» (Free Form), рассчитанным таким образом, чтобы основная часть света проходила над экраном, отвечающим за ближний свет. Эффективность фар возросла до 52%.

Дальнейшее развитие отражателей было бы невозможно без математического моделирования — компьютеры позволяют создавать самые сложные комбинированные рефлекторы. Взгляните, к примеру, в «глаза» таких машин, как Daewoo Matiz, Hyundai Getz или «молодая» Газель. Их отражатели поделены на сегменты, каждый из которых имеет свой фокус и фокусное расстояние. Каждая «долька» многофокусного отражателя отвечает за освещение «своего» участка дороги. Свет лампы используется почти полностью — за исключением разве что торца лампы, прикрытого колпачком. А рассеиватель, то есть стекло с множеством «встроенных» линз, теперь не нужен — отражатель сам отлично справляется с распределением света и созданием светотеневой границы. Эффективность таких фар, называемых отражающими, близка к прожекторным.

Современные отражатели «формируют» из термопластика, алюминия, магния и термосета (металлизированного пластика), а накрывают фары не стеклами, а поликарбонатом. Впервые пластиковый рассеиватель появился в 1993 году на седане Opel Omega — это позволило снизить массу фары почти на килограмм! Но зато поликарбонатные «стекла» гораздо хуже сопротивляются истиранию, нежели стекла настоящие. Поэтому щеточных очистителей фар, которые еще в 1971 году предложил Saab, больше не делают…


Вековое господство лампы накаливания близится к концу. Достойно «завершить карьеру» ей помогают благородные газы криптон и ксенон. Последний считается одним из лучших наполнителей для ламп накаливания — с ксеноном можно поднять температуру нити вплотную к точке плавлению вольфрама и приблизить свет по спектру свечения к солнечному.

Но наполненные ксеноном обычные лампы накаливания — это одно. А «ксенон» с ярким голубым свечением, который применяют на дорогих автомобилях, — это принципиально другое. В ксеноновых газоразрядных лампах светится не раскаленная нить, а сам газ — вернее, электрическая дуга, которая возникает между электродами при газовом разряде при подаче высоковольтного напряжения. Впервые такие лампы (Bosch Litronic) были установлены на серийном BMW 750iL в 1991 году. Газоразрядный «ксенон» на голову эффективнее самых совершенных ламп накаливания — на бесполезный нагрев здесь расходуется не 40% электроэнергии, а всего 7—8%. Соответственно, газоразрядные лампы потребляют меньше энергии (35 Вт против 55 Вт у галогенных) и светят при этом вдвое ярче (3200 лм против 1500 лм). А поскольку нити нет, то и перегорать нечему — ксеноновые газоразрядные лампы служат гораздо дольше обычных.

Но устроены газоразрядные лампы сложнее. Главная задача — зажечь газовый разряд. Для этого из 12 «постоянных» вольт бортовой сети нужно получить короткий импульс из 25 киловольт — причем переменного тока, с частотой до 400 Гц! Для этого служит специальный модуль зажигания. Когда лампа зажглась (для разогрева требуется некоторое время), электроника снижает напряжение до 85 вольт, достаточных для поддержания разряда.

Сложность конструкции и инерция при зажигании ограничили первоначальное применение газоразрядных ламп режимом ближнего света. Дальний светил по старинке — «галогенкой». Объединить ближний и дальний свет в одной фаре конструкторы смогли через шесть лет, причем существует два способа получить «биксенон». Если используется прожекторная фара (как та, что придумала Hella), то переключение режимов света осуществляется экраном, находящимся во втором фокусе эллипсоидного отражателя: в режиме ближнего света он отсекает часть лучей. При дальнем экран прячется и не препятствует световому потоку. А в отражающем типе фар «двойное действие» газоразрядной лампы обеспечивается взаимным перемещением рефлектора и источника света. В итоге вслед за фокусным расстоянием изменяется и светораспределение.

Но по данным французской фирмы Valeo, применив отдельные газоразрядные лампы для ближнего и дальнего света, можно достичь на 40% лучшей освещенности, чем у «биксенона». Правда, модулей зажигания требуется уже не два, а четыре — такие фары имеет дорогой Volkswagen Phaeton W12.

Однако будущее газоразрядных ламп вовсе не такое яркое, как излучаемый ими свет. Наибольший успех специалисты прочат светодиодам.
Светодиод — это полупроводниковый прибор, излучающий свет при прохождении тока. До начала 90-х их автомобильное применение ограничивалось индикацией — уж слишком низкой была светоотдача. Однако уже в 1992 году Hella оснастила «трешку» BMW Cabrio центральным стоп-сигналом на основе светодиодов, и сегодня они все шире используются в задних фонарях в качестве «габаритов» и стоп-сигналов. Светодиоды срабатывают на 0,2 секунды быстрее традиционных лампочек, тратят меньше энергии (для стоп-сигналов — 10 Вт против 21 Вт) и отличаются почти неограниченным сроком службы

Но для того, чтобы заменить лампы светодиодами в фарах головного света, нужно преодолеть ряд препятствий. Во-первых, даже самые лучшие светодиоды по эффективности пока сопоставимы только с галогенными лампами (светоотдача — около 25 люменов на ватт). При этом они дороже и требуют специальной системы охлаждения — ведь это такие же полупроводниковые приборы, как и процессоры компьютеров. Но разработчики уверяют, что к 2008 году светоотдача диодов достигнет уже 70 лм/Вт (у нынешнего «ксенона» — 90 лм/Вт). Так что первые серийные светодиодные фары могут появиться в 2010 году. А пока полупроводникам поручают второстепенные функции — например, постоянный «дневной свет», как это сделала Hella, расположив в каждой фаре Audi A8 W12 по пять светодиодов.

Период адаптации
Попытки повернуть фары автомобиля вслед за рулем люди начали предпринимать сразу после появления самих фар. Ведь это удобно — освещать ту часть дороги, куда ты едешь. Однако механическая связь фар и руля не позволяла соотносить угол поворота лучей со скоростью движения, и правила начала века «адаптивный» свет просто запрещали. Попытку возродить оригинальную идею осуществила фирма Cibie. В 1967 французы представили первый механизм динамической регулировки угла наклона фар, а через год на Citroen DS начали ставить поворотные фары дальнего света.

Теперь идея поворотного освещения возрождается — на новом, «электронном», уровне. Самое простое решение — дополнительная «боковая» лампочка, которая загорается при повороте руля или включенном «поворотнике» на скорости до 70 км/ч. Подобные фары имеют, к примеру, Audi A8 (первое применение) и Porsche Cayenne. Следующая ступень — действительно поворотные фары. В них биксеноновый прожектор с учетом скорости движения, угла поворота руля и угловой скорости автомобиля вокруг вертикальной оси («датчик поворота») поворачивается вслед за рулем в пределах 22° — на 15° наружу и на 7° внутрь. Такими фарами оснащаются и BMW, и Mercedes, и Lexus, и даже Opel Astra. Третий вариант «адаптивного» света — комбинированный. На высоких скоростях активен только поворотный прожектор, а в медленных поворотах или при маневрировании «подключается» статическое освещение (оно имеет больший угол охвата — до 90°). Такими фарами оснащен Opel Signum.

Но, пожалуй, самая интересная из разработок — это VARILIS: система, которую Hella разрабатывает вместе с несколькими автопроизводителями. Сокращение расшифровывается как Variable Intelligent lighting system. Одна из вариаций — система VarioX, которая позволяет фаре работать в пяти режимах света. Для этого в «ксеноновом» прожекторе вместо экрана, включающего ближний свет, находится цилиндр сложной формы. Смена режимов света происходит при вращении цилиндра. Так, например, в городе фары светят близко, но широко, а на трассе ближний свет немного изменяет форму пучка — для большей дальнобойности. Ожидается, что к серийному производству VarioX будет готов в 2006 году. А чуть позже европейские правила позволят связать фары с системой GPS. Одной из первых такую разработку представила BMW в 2001 году. Вспомните концепт-кар X-Coupe с асимметричным дизайном. Фары у него поворачивались по команде GPS-навигатора с учетом скорости движения, угла поворота руля и бокового ускорения. А еще навигационная система позволит «предугадывать» повороты и давать команду на автоматическое изменение светораспределения, скажем, при пересечении английской границы — ведь система VarioX позволяет и это!

А следующий шаг — объединение головного света и систем ночного видения. Но это — тема отдельного разговора…


Америка — Европа
Подход к системам освещения в Старом Свете и за океаном различается кардинально. Начнем с того, что американские законы вплоть до 1975 года запрещали использование фар не круглой формы и галогенных ламп! Причем в Штатах лампа и фара были объединены в одно целое — лампы-фары за океаном использовали с 1939 года. Преимущество у таких приборов было одно — герметичность лампы-фары позволяла покрывать поверхность рефлектора серебром, отражающая способность которого достигает 90% (против 60% у распространенных в те времена хромированных рефлекторов). Но менять лампу-фару, естественно, приходилось целиком.

А главное отличие — в Европе с 1957 года принято асимметричное светораспределение с лучшим освещением «пассажирской» обочины и с четкой светотеневой границей. Но в Америке использование фар с границей света и тени разрешили только с 1997 года. Разрешили, но не потребовали! Свет «американских» фар распределяется почти симметрично, вовсю ослепляя встречных водителей. К тому же американцы регулируют фары только по вертикали. А еще в США и Канаде отсутствует единый порядок сертификации приборов освещения. Каждый производитель лишь гарантирует соответствие своих фар федеральному стандарту по безопасности движения транспортных средств (FMVSS), а подтверждать это приходится, например, в случае аварии по вине световых приборов. Лампочка противотуманной фары

Предполагается, что официально импортируемые из США автомобили проходят проверку на соответствие европейским нормам. «Американские» фары маркируются аббревиатурой DOT (Department Of Transport, Министерство транспорта), а «европейские» — буквой «Е» в кружочке с цифрой-кодом страны, где фара одобрена для использования (Е1 — Германия, Е2 — Франция, и т.д.).

Следует учесть, что при прохождении техосмотра в России «американские» фары и головная оптика «праворульных» машин могут создать проблемы, так как нормативный документ, ГОСТ Р 51709–2001, регламентирует «левоасимметричное» распределение света и четкую светотеневую границу.
Н1 — D2: ход конем

Автомобильные лампы отличаются, как правило, конструкцией цоколя и светоотдачей. Например, в двухфарных системах чаще всего используются лампы Н4 — с двумя нитями накаливания, для дальнего и для ближнего света. Их световой поток — 1650/1000 лм. В «противотуманках» светят лампы Н8 — однонитевые, со светопотоком в 800 лм. Другие однонитевые лампы Н9 и НВ3 могут обеспечивать только дальний свет (светопоток 2100 и 1860 лм соответственно). А «универсальные» однонитевые лампы Н7 и Н11 могут использоваться и для ближнего, и для дальнего света — в зависимости от того, в каком отражателе они установлены. И как всегда, качество лампы зависит от конкретного производителя, оборудования, концентрации и типов газов (например, лампы Н7 и Н9 иногда заполняют не галогенами, а ксеноном).

У газоразрядного «ксенона» другие обозначения. Первыми ксеноновыми лампами были приборы с индексами D1R и D1S — они были объединены с модулем зажигания. А за индексами D2R и D2S скрываются газоразрядные лампы второго поколения (R — для «отражающей» оптической схемы, S — для прожекторной).

Эволюция автомобильных фар: от керосина до светодиода

Сегодня в это сложно поверить, но на первых автомобилях устройств, которые сейчас официально именуются «световыми приборами», не было вовсе! Езда на «самобеглых экипажах» во времена Готтлиба Даймлера и Карла Бенца была весьма рискованным занятием и в светлое время суток. А уж о том, чтобы ездить ночью, мало кто помышлял.

Керосиновая автомобильная фара Современная фара с ксеноновыми лампами и светодиодными элементами Керосиновая автомобильная фара

Фото: Oldmotor.com; Media.daimler.com

Однако с началом эры массового распространения автомобилей проблему освещения дороги непосредственно перед движущейся машиной решать было просто необходимо!..

«Керосинки»

Первые автомобильные фары представляли собой просто-напросто керосиновые лампы. Их главными преимуществами на тот момент была простая, как правда, конструкция, а также возможность максимальной унификации со светильниками, массово распространенными в быту.

Керосиновая автомобильная фара

Фото: Oldmotor.com

На этом, однако, все плюсы «керосинок» для автомобилиста заканчивались, поскольку со своей основной задачей такие фары справлялись отвратительно. Они не столько освещали путь перед машиной, сколько обозначали ее присутствие на дороге. На автомобилях тех лет применялись также масляные светильники, и по эффективности они соответствовали «керосинкам». Замена им была разработана весьма быстро.

С паровоза на автомобиль

В 1896 году, всего через 10 лет после того, как Карл Бенц получил патент на свой первый автомобиль, авиаконструктор Луи Блерио предложил использовать на машинах ацетиленовые фары. Аналогичной конструкции прожекторы активно применялись в то время на… паровозах!

Renault AG Fiacre Paris: один из первых автомобилей с ацетиленовыми фарами

Фото: Tomislav Medak/Wikipedia.org

Дорогу такие фары освещали уже вполне сносно, но активное их использование сопровождалось для водителя «танцами с бубном». Чтобы включить головной свет, нужно было открыть кран подачи ацетилена, затем открыть стеклянные колпаки самих фар и, наконец, зажечь спичкой горелки. Ацетилен при этом вырабатывался прямо на ходу: в отдельном баке, разделенном на два отсека, в который перед поездкой нужно было засыпать карбид кальция и залить воду.

Ацетиленовые светильники, к слову, применяются до сих пор. Например, на расположенных в отдаленных районах маяках – в случае, если для них невозможно или невыгодно вести отдельную линию электропередачи или ставить автономный генератор.

Плюс электрификация всех авто

Хорошо знакомые нам электрические фары стали широко применяться на автомобилях с начала 20-х годов XX века. Впрочем, на моделях класса «люкс» их начали использовать даже раньше: с середины 10-х гг. – практически сразу после изобретения. Одними из первых электрофары в стандартной комплектации получили Cadillac Model 30 и легендарный Rolls-Royce Silver Ghost.

1912 Cadillac Model 30 Rolls-Royce Silver Ghost 1912 Cadillac Model 30

Фото: Carsguide.com.au

По сути, первые подобные фары представляли собой электрические прожекторы, и с основной своей задачей они, естественно, справлялись на ура. Возникла, однако, другая проблема: водители, ехавшие ночью встречными курсами, нещадно ослепляли друг друга. Так появились первые корректоры фар, причем разных типов: рычажные, тросовые, гидравлические. Некоторые производители выводили на переднюю панель рычажок реостата, которым водитель мог отрегулировать яркость ламп.

До чего дошел прогресс…

На первый взгляд современные автомобильные фары далеко «уехали» от прожекторов начала 20-х. Отчасти это действительно так, но… Как говорят в Одессе, вы будете смеяться: в целом конструктивная схема фар головного света и сегодня остается той же! Они по сию пору состоят из корпуса, отражателя, рассеивателя и лампы – источника света.

Конструктивная схема автомобильной фары

Прогресс, однако, на месте не стоит, и в рамках этой нехитрой принципиальной схемы конструкция автомобильной фары регулярно дополнялась важными элементами, делавшими ее все более функциональной, долговечной, удобной и безопасной в использовании.

Так, в 1919 году компания Bosch представила лампу с двумя нитями накаливания. Вкупе с изобретенным к тому временем рассеивателем это был важный шаг на пути решения проблемы, над которой бились конструкторы все предыдущие десятилетия: как эффективно освещать дорогу и при этом не слепить встречных?

В середине 50-х французская фирма Cibie предложила революционное по тем временам решение, применяемое до сих пор. Идея состояла в создании асимметричного пучка света, чтобы со стороны водителя фары светили ближе, чем со стороны пассажира. С 1957 года подобное распределение света входит во все европейские технические регламенты для автомобилей массового производства.

В 1962 году компания Hella представила первую автомобильную галогенную лампу. Колба такой лампы заполняется галогенидами – газообразными соединениями йода или брома, препятствующими активному испарению вольфрама с нити накаливания. В итоге светоотдача «галогенки» выросла в полтора раза по сравнению с лампами прежних поколений, ресурс – сразу вдвое, снизилась теплоотдача, да еще и сама лампа стала гораздо компактнее! Галогенные лампы до сих пор остаются «золотым стандартом» в области автомобильной светотехники.

Citroen AMI: один из первых в мире серийных автомобилей с прямоугольными фарами.

Примерно в те же годы стали производиться автомобили с фарами прямоугольной формы. Затем, с внедрением технологий компьютерного моделирования, конструкторы получили возможность создавать комбинированные рефлекторы сложной формы: с делением на сегменты, каждый из которых по-разному фокусирует световой пучок.

В 1993 году Opel впервые применил на массовом автомобиле (модель Omega) пластиковый поликарбонатный рассеиватель. Это улучшило светопропускание фары и радикально снизило ее общую массу: почти на килограмм.

В конце 90-х – начале 2 000-х началось широкое применение так называемых поворотных фар, световой пучок в которых направлялся вправо/влево вслед за соответствующим поворотом рулевого колеса. Первые эксперименты в этом направлении начались практически сразу после изобретения электрических фар. Однако вскоре попали чуть ли не под законодательный запрет: технологии того времени не позволяли менять направление светового потока так быстро, как это было необходимо во время движения автомобиля.

Citroen DS

Довести идею до ума одной из первых смогла компания Citroen при технической поддержке уже упомянутой фирмы Cibie. Первые поворотные фары дальнего света появились в 1968 году на легендарной модели DS.

К слову, сегодня функция освещения траектории движения в повороте отнюдь не всегда реализуется за счет поворачивающегося прожектора. На недорогих машинах эта задача возлагается на дополнительные боковые лампочки или «противотуманки».

Opel Signum (слева) и рентген-схема его поворотных фар головного света.

Впрочем, даже самый «продвинутый» вариант поворотного света – комбинированный, при котором на малых скоростях включаются боковые лампы, а на высоких – поворачивающиеся прожекторы, – перестал быть уделом моделей класса «Люкс». Такие фары доступны и на автомобилях гольф-класса. Хотя опция эта – отнюдь не дешевая…

В настоящее же время мы наблюдаем, по сути дела, закат «карьеры» лампы накаливания как основного источника света в автомобильных фарах. Эффектную точку в ней призваны поставить газоразрядные лампы. Более известные широкой публике как ксеноновые.

Ксеноновая фара на автомобиле Lincoln

Даже в самом простом варианте использования ксенона – в качестве заполнителя колбы лампы накаливания – эффективность освещения существенно возрастает, а световой поток приближается по спектру к солнечному излучению.

Максимальной же эффективности работы традиционных фар можно добиться при использовании ксеноновых газоразрядных ламп, в которых светится не вольфрамовая нить, а сам газ при подаче высокого напряжения. «Ксенон» потребляет значительно меньше энергии, светит вдвое ярче обычных «галогенок», а служит при этом гораздо дольше за счет принципиального отсутствия хрупкой нити.

Первым серийным автомобилем с ксеноновыми газоразрядными лампами (производства Bosch) стал BMW 750iL 1991 модельного года.

«Безламповое» будущее

Но, как бы ни были эффективны ксеноновые лампы, – будущее, по мнению специалистов, за фарами на основе светодиодов. Инженеры Philips, например, заявляют, что уже в ближайшее время такие фары вытеснят не только «ксенон», но и галогеновые лампы.

Фары Hella для Audi A8 W12 со светодиодными дневными ходовыми огнями

Фото: компания Hella

Светодиоды потребляют меньше энергии, нежели традиционные лампы, а служат едва ли не на порядок дольше. Но главное – устройство светодиодных фар проще, чем ксеноновых, а кроме того у них практически отсутствует характерная для «ксенона» инерция при включении.

Lexus LS 600h 2008: светодиодная головная оптика Lexus LS 600h 2008 Lexus LS 600h 2008

Первыми серийными автомобилями с оптикой на светодиодах были, как водится, люксовые модели. В 1992 году BMW 3-Series Cabrio получил центральный светодиодный стоп-сигнал, в начале 2000-х на Audi A8 W12 появились светодиодные дневные ходовые огни. А на Lexus LS 600h 2008 года передние блок-фары впервые в мире стали полностью светодиодными.

Ну а сегодня такие системы головного освещения уже не являются экзотикой. Полностью светодиодные фары (правда, пока только в качестве опции) получил, например Seat Leon нового поколения.

Seat Leon 2013

Думается, пройдет совсем немного времени – и подобные фары будут столь же привычны на массовых авто, как и сегодняшние «галогенки»…

Еще один «стандарт будущего», о котором нельзя не сказать: на концептах немецких производителей – Audi и BMW — уже используются лазерные фары.

И если Audi со слов исполнительного директора Руперта Штадлера собирается оснащать лазерной оптикой серийные модели, но не называет никаких конкретных дат, то в BMW уже предлагают лазерные фары в качестве опции для спортивного гибрида i8, серийный выпуск которого назначен на 2014 год.

BMW i8: Laser Light BMW i8: Laser Light BMW i8: Laser Light

В январе текущего года на выставке потребительской электроники CES в Лас-Вегасе во время демонстрации концепт-кара Audi Sport quattro, оснащенного инновационными фарами, компания производитель рассказала про отличительные особенности лазерных диодов от традиционных, упомянув дальность освещения – фантастические 500 метров!

Audi Sport quattro

Экономичность, компактность и могучая интенсивность света — вот безусловные козыри лазерной оптики. Естественно никто не будет светить лазером в глаза встречному потоку, тем более что решение, как сделать работу таких элементов безопасным, уже есть… Встречаем будущее!

Назначение и устройство автомобильной фары

1.Корпус.

Содержит все компоненты фары – кабель, отражатель, лампу и т.д. Устанавливается в кузов автомобиля, защищает лампу от перегрева, влажности и механических повреждений. Изготавливается из термопластика.

2. Отражатель.

Лампа излучает неполяризованный свет, лучи которого не имеет одного направления, а испускаются во все стороны. Отражатель собирает лучи и направляет его в сторону дороги. Внутренняя поверхность сделана из латуни, пластика или стекла и покрыта отражающим слоем серебра, хрома или алюминия.

3. Рассеиватель.

Бывает двух видов: с рисунком и прозрачным покрытием.

1. Рассеиватель «с рисунком». Оптические элементы – углубления и засечки на линзе, рассеивают частично поляризованный отражателем свет, чтобы получить нужный угол освещения дороги. Конструкция устарела и сейчас используется крайне редко.

2. Рассеиватель с прозрачным покрытием не имеет оптических элементов. Используется для 3 типов фар: с биксеноновыми лампами, с дополнительной рассеивающей линзой, для фар свободной формы. Основная функция – защищать лампу от грязи и воды. Изготавливаются из стекла или пластика. Пластик имеет ряд преимуществ: более прочный, более легкий, из пластика легче сделать фару любого дизайна.

4. Излучатель.

1. Лампа накаливания. Традиционный излучатель. Внутри стеклянной колбы создан вакуум, внутри которого вольфрамовая нить нагревается электрическим током до 2000 град С.

2. Галогенная лампа. Стеклянная колба заполнена буферным галогенным газом – йодом или бромом. Благодаря галогенам работает до 1000 часов. Галогены – 17 группа элементов в таблице Менделеева. Обладают общими свойствами – неметаллы, сильные окислители.

3. Газоразрядная лампа (HID). Свет излучает нагретый газ (ксенон). Работает до 2000 часов. Ксенон – благородный газ. Не имеет вкуса, цвета или запаха. Применяется в лампах накаливания, для лечения травм головного мозга, медицинской диагностики, как рабочее тело лазеров.

4. Светодиоды (LED). Работают на основе заполнения электронами пустых «дырок» в полупроводнике с выделением фотона. Многократное выделение фотонов приводит к свечению. Энергоэкономичны.

Как устроены фары? | Журнал Популярная Механика

Водители задумываются о фарах только в двух случаях — когда они по той или иной причине по ночам не видят дорогу и когда их слепит встречная машина. Пока не перегорает лампа, о фарах обычно даже не вспоминают. И зря — ведь от них зависит не только комфорт, но и безопасность водителя. Да и вообще эволюция автомобильного света и устройство современной фары интересны сами по себе.

В первых автомобилях использовались самые примитивные фонари — керосиновые либо ацетиленовые. Лет сто назад на место открытого пламени вставили электрическую лампочку. С одной ее стороны имелся отполированный рефлектор, с другой — линза. Герметизации фар в то время не было, так что рефлектор очень быстро ржавел. И без того слабый свет становился еще тусклее, а главное, вокруг фары образовывался ореол, слепящий встречные автомобили. Запрет на фары этого типа ввели в 1941 году.

Лампочка h23 для ближнего/дальнего света. Компьютеризованные системы настройки в процессе сборки тщательно выверяют положение контактов и нити в каждой лампочке. При этом выдерживаются допуски не более 0,01 мм. Это значит, что, заменяя лампу, вам не потребуется заново подстраивать направление фар. Волосок для дальнего света расположен прямо в фокусе рефлектора, обеспечивая таким образом наилучшее освещение дороги. Волосок для ближнего света немного отведен от точки фокуса, исходящий от него свет обрезается в верхней части и меньше травмирует глаза встречных водителей. В конструкциях некоторых кварцевых ламп для эффективного обрезания верхних лучей используется металлический экран.

Герметичная лампа-фара мало отличается по своей сути от бытовой лампы — вольфрамовый волосок помещается в стеклянной колбе, заполненной инертным газом, но рефлектор установлен прямо внутри колбы. Эти лампы, как и обычные бытовые, постепенно теряют яркость, так как вольфрам испаряется с волоска и оседает на стенках колбы. Фары с переключением ближний/дальний свет появились только в 1920-х. До этого из-за огромных допусков тогдашней сборки все регулировки по направлению светового потока просто не имели смысла. Герметичные фары оказались весьма дешевы — в основном из-за унификации, позволявшей гнать огромные тиражи. Фары выпускали нескольких типов, и стандартизированный подход связывал руки автодизайнерам, ограничивая возможность придать машине индивидуальный облик. С 1973 года автопроизводители стали заменять лампы-фары на светильники с галогеновыми лампами.

На габаритах и стопсигналах светодиоды используются относительно давно. Это новшество развязало руки дизайнерам, позволяя оформлять фонари в любом стиле. Кроме того, светодиоды потребляют мизерные количества энергии, а загораются на 400−500 миллисекунд быстрее, чем лампа накаливания. Это не так уж мало — едущий за вами и болтающий по мобильнику раззява, при скорости около сотни км/ч будет иметь запас метров 12 чтобы успеть нажать на тормоза.

Галогеновые лампы с 1980-х — самая распространенная основа для автооптики. Это небольшая лампочка, которая вставляется внутрь сборки из рефлектора и линзы. Благодаря современным герметикам и технологии сборки сейчас рефлекторы уже почти не корродируют из-за попадания влаги внутрь. Колба лампы из термостойкого кварца позволяет поддерживать весьма высокую температуру волоска, так что по цветовому составу свет получается существенно ближе к естественному дневному. Более высокая температура означает еще и то, что лампа имеет большую световую отдачу на единицу поглощаемой энергии. С другой стороны, вольфрамовый волосок из-за этого испаряется быстрее, и чтобы этому противостоять, галогеновые лампочки заполняют теперь не только инертным газом, но и парами брома или йода. Галоген вступает в соединения с парами вольфрама, а при контакте с раскаленным волоском эти соединения снова распадаются и вольфрам оседает на том же волоске.


От HID («ксенон») к светодиодам

В лампах HID (High Intensity Discharge, газоразрядные высокой интенсивности, в просторечии «ксенон») вообще нет никаких волосков. Вместо них свет излучает высоковольтная дуга в атмосфере инертных газов. Для зажигания этих ламп требуется высокое напряжение и высокий стартовый ток (когда лампа уже заработала, она потребляет гораздо меньше энергии и выдает больше света, чем обычная галогеновая). Кроме того, электрическая дуга выдает более равномерный световой поток, который проще фокусировать.
Есть тут, правда, и один недостаток — на то, чтобы лампа зажглась, прогрелась и начала выдавать полную мощность, требуется несколько секунд. Поэтому в некоторых машинах лампы HID используют для ближнего света, а для дальнего оставляют обычные галогеновые. Альтернативный вариант — шторка с механическим приводом, тогда одна ксеноновая лампа может иметь распределение света под оба режима.
Тем не менее, будущее автомобильного света специалисты отдают полупроводниковым технологиям — светодиодам. Поскольку до сих пор не существует никаких стандартов на унифицированную светодиодную сборку, автопроизводителям приходится для каждой модели изготавливать оригинальную конструкцию, а это недешево. Но благодаря явным преимуществам (малый вес, стойкость к вибрациям, большие сроки эксплуатации, сверхнизкое потребление энергии) светодиоды, вероятно, вскоре вытеснят с рынка системы HID.
На дорогих машинах фары HID (ксенон) зачастую ставят в качестве штатного оборудования. На рынке запчастей и аксессуаров тоже предлагается множество разнообразных комплектов «ксенона». (Нередки даже случаи, когда аббревиатурой HID маркируют обычные галогеновые лампы — так что будьте бдительны!) В них, как правило, имеется дуговая лампа и система запуска — все как в оригинале, только посадочные места рассчитаны на то, чтобы лампа подошла к стандартной «галогеновой» фаре. Такие комплекты стоят гораздо дешевле штатных, но… Форма вольфрамовой нити накаливания существенно отличается от формы электрической дуги. В результате распределение светового потока, исходящего от такой фары, оказывается совершенно непредсказуемым. Хотя водителю такой машины дорога будет видна прекрасно, встречным водителям не позавидуешь, поэтому такие самовольные переделки считаются незаконными.

Производство таких лампочек представляет собой немалое достижение в области высоких технологий. После того как электроды запаивают в стеклянную толщу донышка, воздух отсасывают из лампы через верхушку колбы. Язычок пламени нагревает верхнюю часть лампы до размягчения, а поток жидкого азота охлаждает основание почти до -200°С. Внутрь колбы бросают гранулу замороженных газов (обычно это инертные газы плюс галоген). В тот же момент мягкую верхушку лампы закупоривают, и когда гранула испаряется, давление в колбе поднимается до 4−5 атмосфер.

Европейские и американские нормы распределения светового потока (а следовательно, и конструкции фар) несколько отличаются. Для европейского света характерна более четкая светотеневая граница с подъемом справа, световой поток направлен на дорогу и правую обочину. Такое распределение минимизирует ослепление встречных водителей и позволяет видеть «пассажирскую» обочину на большее расстояние. В американском свете светотеневая граница менее выражена, световой поток почти симметричен.

Галогеновая лампа излучает свет с температурой 3400 К (цветовая температура естественного солнечного света примерно 6000 К). Последнее время на дорогах появляются лампы с бело-голубым свечением, заметно отличающимся от привычного желтоватого. Обычно это «тюнингованные» лампочки, в которых на колбу нанесены различные покрытия для имитации света от более дорогих газоразрядных ламп. Цветовая температура действительно несколько выше, но светоотдача не повышается ни на грош, так что цель этого — только престиж.

Статья опубликована в журнале «Популярная механика» (№6, Июнь 2011).

4.5. Конструкция современных головных фар

Основными конструктивными элементами головных фар явля­ются: корпус; регулировочный механизм; оптический элемент, содержащий отражатель; рассеиватель; экран прямых лучей; одно- или двухрежимный источник света. Одной из важных конструктив­ных характеристик фары служит ее форма — круглая или прямо­угольная. На протяжении почти 40 лет основной формой фары бы­ла круглая со стандартизованными размерами оптического элемен­та — Ø 178 мм у двухфарной системы и Ø 146 мм у четырехфарной системы освещения.

Рис. 4.5. Устройство круглой фары:

Устройство круглой фары приведено на рис. 4.5. Она состоит из: 1 — оптический элемент; 2- ободок; 3 — регулировочные винты; 4 -держа­тель; 5 — корпус; 6- источник света; 7— токоподводящая колодка; 8 — винты крепления ободка. Оптический элемент 1 круглой фары выполнен в виде склеенных между собой стеклянного рассеивателя и металлическо­го отражателя, в слепое отверстие которого установлен источник света с одним или двумя (в зависимости от режима работы) телами накала. На отбортовке горловины установлен спрессованный фла­нец с пружинными зажимами, поджимающими опорный фланец лампы к опорному торцу отражателя.

Источник света 6 установлен таким образом, чтобы тело нака­ла дальнего света было расположено в фокусе отражателя, а те­ло накала ближнего света было расфокусировано относительно фокуса отражателя вперед и вверх. В современных конструкциях применяются обычные лампы типа Е, например А12-45+40 и гало­генные источники света типа Н: Н1, НЗ, Н4, Н7, Н9, Н11, Н13.

К отражателю на кронштейнах приклепывается экран прямых лу­чей от лампы, что позволяет несколько снизить ослепление водите­лей встречных автомобилей (при ближнем свете) и уменьшить яр­кость свечения атмосферы при ее малой прозрачности. Экран вы­полняют из тонкой металлической ленты сферической формы. Отра­жатель круглых фар имеет параболоидную форму с фокусным рас­стоянием, варьируемым в различных конструкциях от 19 до 28,5 мм.

Держатель 4 подвижно установлен в корпусе фары и за счет уп­ругой подвески пружинами сжатия и распором двумя винтами 3, имеет возможность поворачиваться в двух плоскостях — вертикаль­ной и горизонтальной, обеспечивая тем самым регулировку свето­вого пучка относительно дороги.

Рассеиватель оптического элемента представляет собой круглое или прямоугольное стекло, на внутренней поверхности которого на­ходятся преломляющие элементы: цилиндрические и сферические линзы, призмы и призмолинзы. Рассеиватели фар изготавливаются, как правило, из бесцветного силикатного стекла. В последнее время ведутся работы по замене стекла абразивостойкой пластмассой, од­нако дешевых способов ее получения до сих пор не найдено.

Корпус 5 круглых фар выполняется металлическим с фланцем для крепления к кузову автомобиля и имеет кронштейн для уста­новки ободка 2, поджатого к поверхности оптического элемента. В тыльной части корпуса имеется отверстие для установки жгута коммутирующих проводов со штекерными токоподводящими разъ­емами с обоих концов, один для подключения к источнику света, другой — к сети автомобиля.

Другой разновидностью традиционных конструкций фар является прямоугольная фара, получившая распространение в 60-х годах. Ее характерной особенностью является использование усеченного пара­болоида с большим диаметром светового отверстия (до 250 мм), что обеспечивает увеличение работающих зон в горизонтальном направ­лении, чем существенно улучшается светораспределение в режиме ближнего света. Кроме того, такая форма позволяет снизить верти­кальный габарит фары и обеспечивает тем самым предпосылки к сни­жению коэффициента аэродинамического сопротивления воздушному потоку, чем повышает топливную экономичность автомобиля.

К недостаткам прямоугольных фар следует отнести их худшую технологичность, большую стоимость и потребность в большем подкапотном пространстве для размещения.

Принцип работы светооптической схемы этих фар, а следова­тельно, и требования к ее элементам такие же, как и к фарам Круглого исполнения, а их конструкция в силу особенностей формы имеет ряд существенных отличий. Из-за большего горизонтального размера поворот оптического элемента такой фары при регулиров­ке на 4° сопровождается большим линейным перемещением боко­вых краев рассеивателя и выступанием их из-за декоративного ободка на 15…20 мм. Это обстоятельство заставляет крепить рассеиватель неподвижно, а направление светового пучка регулиро­вать поворотом только отражателя внутри корпуса фары.

Рис.4.6.

На рис. 4.6 изображена типовая конструкция прямоугольной фа­ры. В корпусе 2, выполненном из пластмассы, закреплен винтами через ободок рассеиватель 1. (В других вариантах рассеиватель к корпусу может приклеиваться, поджиматься плоскими пружинами или хомутами.) Отражатель 3 смонтирован внутри корпуса подвиж­но на трех опорных шаровых шарнирах 10.

Шаровой шарнир 4 является неподвижной опорой. Поворот от­ражателя в горизонтальной плоскости обеспечивается вращением винта 6, перемещающего шарнир 7; отражатель при этом повора­чивается вокруг вертикальной оси, проходящей через центры шар­ниров 4 и 5. Крайние положения отражателя показаны на рис. 4.6 штриховой линией.

Регулировка наклона светового пучка фазы осуществляется двумя винтами 8 и 9. Начальная (установочная) регулировка произ­водится винтом 9, отражатель при этом поворачивается вокруг го­ризонтальной оси, проходящей через центры шарниров 4 и 7. Кор­ректировка угла наклона светового пучка фазы (например, при из­менении нагрузки автомобиля), т.е. изменение положения пучка в вертикальной плоскости, осуществляется винтом 8, от которого мо­жет быть сделан привод в кабину водителя.

На основе изображенной на рис. 4.6 конструкции легко изготав­ливается блок-фара с встроенным внутрь корпуса (рис. 4.7,а) или смонтированными сбоку (рис. 4.7,б) необходимыми светосигналь­ными приборами.

Рис. 4.7.

Блок-фары получили широкое распространение в 1980-е годы за счет некоторого снижения себестоимости комплекта световых при­боров и более органичного эстетического оформления передней части автомобиля.

В США, Японии и ряде других стран оптические элементы тра­диционных конструкций фар, как круглых, так и прямоугольных, вы­полняют в виде неразъемных ламп-фар. Рассеиватель и отражатель этих приборов изготавливают из стекла, после чего отражатель алюминируют, монтируют в нем систему нитей накала, сваривают тражатель с рассеивателем, откачивают из образовавшейся кол­бы воздух и окончательно заваривают колбу.

Постоянно увеличивающийся дефицит топлива предопределил устойчивую тенденцию к снижению коэффициента аэродинамиче­ского сопротивления воздушному потоку при движении автомоби­ля, реализация которой потребовала обеспечения узкого профиля передней части автомобиля, а следовательно, и резкого ограни­чения высоты фары до 60…90 мм вместо 120…150 мм. Эти требо­вания практически исключают возможность использования в кон­струкциях фар традиционных светооптических схем, так как для сохранения необходимого светового потока в этом случае требу­ется значительное увеличение глубины отражателя, что вызывает технологические трудности. Кроме того, традиционные светооптические схемы, в которых функция перераспределения светового потока выполняется рассеивателем с глубокими призмами, не до­пускает его наклона в вертикальной плоскости на углы, большие чем 25°. Именно эти обстоятельства привели к разработке прин­ципиально новых решений.

Фирмой Lucac (Великобритания) была предложена конструкция фары, в которой отражатель выполнен в виде объединения не­скольких (двух-трех) усеченных параболоидных элементов с раз­личным фокусным расстоянием 20 и 40 мм при совмещенных по­ложениях их фокусов. Этот принцип объединения разнофокусных отражателей называется гомофокальным. Использование этого прин­ципа позволяет подобрать и скомпоновать отражатель из отдельных секторов разнофокусных отражателей таким образом, чтобы обеспе­чить формирование заданного светораспределения режимов ближнего и дальнего света практически за счет отражателя.

Рис. 4.8.

Реализация этой светооптической схемы позволила сконструи­ровать фару, полностью удовлетворяющую современным требова­ниям автомобилестроителей по аэродинамике. На рис. 4.8 показан профиль автомобиля с такими фарами.

Практическая реализация гомофокальной конструкции потребо­вала пересмотра технологии изготовления, так как сложный про­филь отражателя с высокой точностью можно получить лишь из легко формуемых материалов, т. е. пластмасс, обладающих также высокой термостойкостью, что обеспечивает работу фары с гало­генными лампами. Стоимость материалов пока очень высока, а технологический процесс их формования достаточно трудоемок, что является сдерживающим фактором широкого применения кон­струкции этого типа.

Эллипсоидные фары головного света, предложенные фирмой Hella, представляют другое направление развития конструкции. Их характерной особенностью является более полное использование светового потока лампы при ближнем свете, т. е. относительно большой КПД. Конструкция такой фары (рис. 4.9) содержит эллип­соидный отражатель 2, в один из фокусов которого установлен ис­точник света 1. Весь световой поток, отраженный таким отражате­лем, концентрируется в его втором фокусе, где в режиме ближнего света частично экранируется, что позволяет создать четкую свето­теневую границу. Затем используемый пучок корректируется с по­мощью достаточно простой линзы 3. Для достижения необходимых значений светотехнических характеристик отражатель снабжают элементами параболоидных поверхностей, сопряженными с эллип­соидом, и преломляющими концентрическими призматическими элементами.

Рис.4.9.

К основным недостаткам светооптических схем этого типа следует отнести технологические трудности, высокую стоимость, а также ограниченное их ис­пользование только в четырехфарной системе освеще­ния.

Естественно, что этими на­правлениями не исчерпыва­ются пути совершенствования: светооптических схем оптиче­ских элементов и систем ос­вещения в целом. Продолжает совершенствоваться система поляризованного света, ведут­ся поиски использования в системах освещения волокон­ной оптики.




Отправить ответ

avatar
  Подписаться  
Уведомление о